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1 .  I N T R O D U C T I O N

This paper shows how a non-stationary vector predictor can be used to identify redundancy in
various common forms of speech data. A number of different forms of data are used: some
producing spectrogram-like representations, while others are rarely displayed graphically in the
literature, and so many researchers are not familiar with the structure they exhibit (or the fact that
they exhibit any significant structure at all).

The method used here is known as flow-based prediction (FBP) [1]. The prediction takes the form
of a standard vector linear predictor [2], but with a sparse, time-varying, prediction matrix, which
is updated over a very short time scale. This makes it eminently suitable for modelling speech
dynamics, since large changes in, for example, formant trajectories, can occur over a very small
number of analysis frames.

FBP, like the acoustic flow of Moore et al. [3], uses dynamic programming to estimate the most
likely links between the elements of one observation vector and those of the next. However, FBP
extends the acoustic flow concept to provide simultaneous estimates of the coefficient matrix and
the innovation vector of a first-order vector linear predictor.  These prediction parameters allow
for positional shifts and merging of the features within the data vectors.

2 .  S PE E C H  D Y N A M I C S

The main articulators involved in speech production are not able to move abruptly. Speech signals
can therefore be considered piecewise-continuous, except, for example, during plosives (where the
signal statistics change rapidly). Plosive sounds have a short duration and the only other abrupt
changes (from one continuous segment to the next) occur as a result of changes in voicing or
nasalisation. Thus most of the speech signal evolves smoothly with respect to time.

This behaviour has previously been allowed for merely by temporal over-sampling, so that
consecutive frames with smoothly-evolving characteristics can be identified as such by their small
inter-frame Euclidean distances. In speech recognition, this approach is often implemented by the
calculation of delta coefficients [4]. Thus, at present, speech recognition and coding systems do
not fully account for speech dynamics, requiring significant temporal oversampling and even then,
attributing undue importance to many insignificant parts of the signal.
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The method described here, flow-based prediction (FBP), lowers the level of redundancy in
speech data by tracking the features within the observation vectors and predicting their flow. FBP
is computationally efficient and adapts very quickly to changes.

Figure 1: Spectrogram of the segment "...in
greasy..."

Figure 2: Spectrographic acoustic flow of
the segment "...in greasy..."

3 .  FL O W - B A S E D  PR E D I C T I O N

Acoustic flow uses dynamic programming to align consecutive observation vectors to make the
evolution of the speech data manifest. The two plots in Figures 1 and 2 show a small segment of
continuous speech. Figure 1 is the spectrogram of that utterance, which can be combined with the
flow data, to give the spectrographic acoustic flow in Figure 2. Here, the darkness of each line
illustrates the value of the observation vectors, and the lines themselves indicate the optimal links
between one frame and the next. From these graphs it is apparent that, where the formants are
changing smoothly, the flow has tracked that movement.

Flow-based prediction assumes that the change from one vector to the next can be modelled by
averaging and shifting within a vector, together with a smoothly changing innovation. The process
can be represented as non-stationary vector linear prediction:

o C o vn n n n+ = +1

However, there are two factors that differentiate it from conventional vector linear prediction.
Firstly, the prediction matrix is automatically updated over a very short time scale, directly from
the observation vectors, so as to track the features in the data more accurately. Secondly, the
innovation vector is assumed to evolve steadily, following the lines of flow. The only exception to
this is when an abrupt change occurs, when the innovation is assumed unpredictable, and
estimated as zero.
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(a) Maximum entropy method power spectrum

(b) Maximum likelihood method power spectrum

(c) Linear prediction coefficients

(d) Log vocal tract area

Figure 3: Typical representations of the sentence "She had your dark suit in greasy wash water all
year." spoken by an adult male.

4 .  S PE E C H  R E PR E S E N T A T I O N S

There are many methods for analysing speech, each of which yields a different representation of
the speech signal [5]. Even estimating the power spectrum of speech can give rise to a perplexing
multitude of alternative algorithms, each with its own assumptions and peculiarities. For the
purposes of this paper, the methods described below have been considered. Most of these are
described in more detail in [6]. Wherever possible, the parameters of each analysis have been
chosen to be comparable with each other. The details are given in the Appendix. Typical
representations can be seen in Figure 3.

4.1 Periodogram
This is the most common method for visualising speech signals. It is formed by taking the discrete
Fourier transform (DFT) of a windowed segment of speech, and finding the modulus squared of
each complex output value. It provides an estimate of the power spectral density (PSD) which is
degraded by the spectral effects of temporal windowing. The frequency resolution of the
periodogram is inversely proportional to the length of the input frame (for a given window shape),
and cannot be controlled independently, except by changing the window. The choice of window is
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restricted by the expected dynamic range of the elements in each PSD estimate, and the required
degree of temporal continuity. To give temporal continuity with adult male speech, this method
can only give a narrow-band spectrogram, clearly resolving individual pitch harmonics, and
making this representation unsuitable for simple HMM recognition.

4.2 Blackman-Tukey power spectrum
One method for controlling the resolution of a periodogram is to window an estimate of the
autocorrelation function, rather than the data itself. This allows the frequency resolution to be
reduced without losing temporal continuity. However, the window must have a non-negative
Fourier transform for negative PSD estimates to be avoided. This method can give a broad-band
spectrogram, characterising formant structure rather than pitch. Because of the limited frequency
resolution, however, very closely-spaced formants are not always clearly resolved.

4.3 Maximum entropy power spectrum
The power spectrum of an autoregressive (AR) process can be obtained by calculating the
parameters of the AR model from the autocorrelation function of the signal. This has been done
here by Burg’s method [6]. The maximum entropy method (MEM) PSD estimate is then obtained
by multiplying the innovation power by the transfer function of the implied recursive filter. Since
speech cannot always be approximated as an AR process (e.g. when corrupted by additive noise or
reverberation, or during nasalised speech), the resulting PSD estimate can occasionally exhibit
false peaks. Nonetheless, high quality speech recordings exhibit very clear formant tracks, and the
resulting PSD estimate is visually very similar to that of a periodogram, but without any evidence
of pitch harmonics.

4.4 Maximum likelihood power spectrum
This is variously referred to as the minimum variance PSD estimate, the maximum likelihood
method (MLM) or Capon’s method. It involves the design of an FIR filter for each frequency
where an estimate of the PSD is required. These filters have unity gain at the design frequency, but
with minimal overall output power. Thus the technique attempts to attenuate all but the frequency
component of interest, and can be considered as a data-adaptive DFT. The power from each filter
is calculated from the autocorrelation function of the signal, without explicitly implementing the
filters, using the method described in [7].

The order of the filters determines the maximum number of frequency components which can be
attenuated, and is chosen according to the application. To resolve formant structure while
suppressing pitch information, the filter order should be chosen to be slightly more than twice the
maximum number of formants, as in linear prediction analysis.

The frequency resolution is data-dependent, but generally intermediate between that of the
maximum entropy and periodogram methods.

4.5 Cepstrum
Since speech can be considered as the product of a source spectrum and a vocal tract transfer
function, pitch information can be separated from formant structure by homomorphic filtering. A
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log-power periodogram is formed and then inverse-Fourier transformed to give a cepstrum
containing formant data in its lower coefficients, with pitch being apparent at the higher end.

4.6 Linear prediction (LP) coefficients
Autoregressive modelling of speech signals can give a very concise description of the vocal tract
transfer function. The results of this analysis are often presented as the coefficients of a ladder
filter which can be used to predict one step ahead of the speech waveform. They generally exhibit
a smooth, predictable structure during fricatives, but only their envelope consistently changes
smoothly during voiced speech.

4.7 Reflection coefficients
Burg’s method for calculating linear prediction coefficients is based on the calculation of reflection
coefficients, which can be viewed as the parameters of an acoustic-pipe model of speech
production [8]. These always have values between -1 and 1, so have lower dynamic range than
standard linear prediction (ladder) coefficients, although many of their other properties are
somewhat similar.

4.8 Vocal tract area functions
The shape of the acoustic pipe implied by a set of reflection coefficients can be calculated by
adding successive log area ratios [8]. This gives a set of parameters which are loosely related to
the cross-sectional area of the vocal tract, and therefore obey rules of motion similar to those of
the real vocal tract. For example, as the tongue moves a constriction forward and backward, the
vocal tract area function’s values will move within the data vector, while the opening and closing
of the mouth will affect the magnitude of the values at the respective end of that vector. However,
there is an extremely abrupt change in their values between voiced and unvoiced speech. Such
changes are difficult to predict and invariably give large prediction errors (at least for a short
time).

5 .  R E S U L T S

Flow-based prediction was applied to one of the TIMIT files originally used as a standard test
utterance in [5], taken from /DR5/MEWMO/SA1.WAV, "She had your dark suit in greasy wash
water all year", spoken by a man from a Southern USA dialect region. The FBP algorithm was
then compared with a zero-order predictor (which gives errors equal to the delta coefficients). The
error magnitudes were calculated during steadily evolving segments of the utterance. Table 1
shows the FBP’s degree of improved performance.

From Table 1 it is apparent that the speech representations which are most amenable to flow-based
prediction (maximum likelihood, maximum entropy and Blackman-Tukey methods) are those
PSD estimates which are tuned to resolve formant structure and suppress pitch (Figures 3(a) and
3(b)). The behaviour of the FBP algorithm, when predicting a diphthong, is shown in more detail
in Figure 4. This demonstrates the FBP’s ability to remove more of the redundancy from the data
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than the zero-order predictor implicit in delta coefficient calculation, since the error magnitudes
are smaller and exhibit less structure in the case of FBP.

Vocal tract area functions are also better
modelled by FBP, because of their
relationship to the positions of the
articulators within the vocal tract. However,
the advantage is only slight, because the
longitudinal motion of those articulators only
covers a limited range (see Figure 3(d)).

Those methods which yield parameters directly related to
impulse response-like functions (linear prediction and
reflection coefficients) only produce data with an
appropriate structure during fricatives (see Figure 3(c),
for example), which constitute only a small part of most
utterances. Elsewhere, the most significant correlation

between elements of consecutive vectors is between identical elements: there is little migration of
features between elements, so the acoustic flow is rarely of any use. However, the information
they contain must still be predictable, since they can be transformed into a suitable PSD form. All
that these negative results show is that the evolution of the speech signal is more difficult to model
in these domains.

In the case of the cepstrum, FBP gave no measurable advantage over a zero-order predictor, but in
this case, the problem is attributable to the scoring method used, which took no account of the
variance of individual elements within the vector. In the case of the cepstrum, the first coefficient
has much greater variance than any of the others, so the error scores are heavily biassed towards
that coefficient.

The narrow-band periodogram is inherently inappropriate to the model assumed in flow-based
prediction, since the pitch harmonics move independently of the formants. This means that a more
complicated model of combined pitch and formant evolution is required.

SPEECH
REPRESENTATION

FBP
IMPROVEMENT

Maximum likelihood PSD 57%

Maximum entropy PSD 49%

Blackman-Tukey PSD 36%

Vocal tract area 6%

Periodogram None

Cepstrum None

Linear prediction None

Reflection coefficients None

Table 1: Comparison of zero-order and flow-
based prediction errors.

Figure 4: Delta coefficient (upper)
and FBP error (lower) magnitude
plots for the diphone "...rea..."
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6 .  C O N C L U S I O N S

Flow-based prediction yields an accurate model of speech dynamics, provided the data changes
smoothly. In this context, broad-band PSD estimates are therefore the most powerful
representation for characterising smooth changes in speech. However, the current FBP model can
only cope with one aspect of signal evolution at a time (pitch or formants, but not both), so data
such as narrow-band periodograms is not appropriate.

When used on a suitable form of data, the FBP error has lower redundancy than delta coefficients
(zero-order prediction error) and can be calculated at a reduced computational cost, and with fewer
prior observation vectors, than full first-order vector linear predictor parameters.

7 .  FU T U R E  W O R K

There is considerable scope for further work on FBP. One area would be the development of a
combined model for simultaneous evolution of pitch and formant structure. Another would
involve development of evolutionary models for non PSD-like speech representations (such as LP
coefficients). One approach to this might involve calculating acoustic flow in a domain where
FBP’s assumption of "steady evolution" is valid, and then converting the prediction into a different
domain (MEM, MLM, reflection coefficients, vocal tract areas and LP representations are all
calculated from the same Burg algorithm and are inter-related).

8 .  A PPE N D I X :  I M PL E M E N T A T I O N  I S S U E S

8.1 Input data
The data used here was taken from the TIMIT database, which was sampled at 16 kHz. The
speech was pre-emphasised, giving roughly 6dB per octave gain above 500 Hz, prior to each
analysis.

All the analysis methods used here are frame-based techniques, but the way the data is treated
affects the temporal continuity of the resulting speech representations. For those analyses which
analyse the data directly, each frame has been chosen to include at least two pitch pulses, and so
the duration has been set to 25 milliseconds. However, those which initially window the data, have
used a 50 millisecond minimum 4-sample Blackman-Harris window [9]. In either case a frame
rate of 80 per second was chosen. This gives roughly 50% overlap correlation between successive
data windows in both cases.

8.2 AR models
Much of the data presented in this paper was calculated by autoregressive (AR) modelling. In all
cases, the order was set to 16, and Burg’s method was used to estimate the AR parameters.
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8.3 Logarithms
Power spectrum estimates are normally encoded on a log scale. In this paper, this scale is
approximated by a function with similar, but more well-behaved, numerical properties. The same
function is used to encode the vocal tract area functions, and in the intermediate calculations for
the cepstrum.

In practice, log scales can cause problems when numbers become very small, and are totally
impractical if numbers can become negative (due to rounding errors, etc.). To avoid this, it is usual
to set a lower threshold on the data values, before the log is taken. This, however, assumes that the
range of values is known a priori. To avoid having to estimate the respective ranges, a log scale
can be approximated by taking the Nth root of the data value:

( ) ( )ln ; ,x N x N xN≈ − >> ≈1 1 1

Here, N is a constant defining the range over which this formula is valid. The larger N is, the
wider the range on either side of x = 1, for which the approximation holds. Furthermore, if N is
chosen to be a positive, odd integer, this equation will be monotonic and calculable for any real
value of x. In applications where scaling and offset on the resulting values is not important, it has
useful properties related to amplitude-independence. In the data presented here, a value of N = 5
has been used, giving an effective dynamic range of 200:1 regardless of the mean level of the data.
Interestingly, this value is similar to that used in many auditory models.

8.4 Autocorrelation functions
The autocorrelation function for the Blackman-Tukey PSD estimate was estimated from the
inverse discrete Fourier transform of a periodogram, and windowed with the autocorrelation
function of a minimum 4-sample Blackman-Harris window. This in itself is a finite-duration
function, nonnegative for all time and at all frequencies. It therefore provides a valid PSD
estimate.
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