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This paper presents a radial basis function network as a one step ahead predictive speech
signal �lter. The prediction residual can be interpreted as a powerful pitch pulse detector
which shows improved performance over a conventional autoregressive �lter and allows further
processing to make more accurate estimations of pitch pulse position, the pitch, and the
regions of voiced and unvoiced speech. In noisy speech the introduction of recursive elements
into the radial basis function network allows successful pitch estimation to be maintained.

The aim of this paper is to present the application of a radial basis function network (RBFN)
predictive �lter to speech pitch period estimation. Speech production can be modeled using
an auto-regressive all pole �lter with an excitation signal comprising a series of quasi-periodic
pitch pulses during voiced speech and white noise during unvoiced speech. The detection of
the pitch pulse in voiced parts of speech is important for applications such as linear predic-
tive coding (LPC) where reduced sensitivity to the fundamental frequency in the prediction
residual during training provides a more accurate determination of the speech parameters.

The application of neural networks for the identi�cation and interpretation of speech signals
is of particular interest due to the non-linear and non-stationary nature of speech [4] and the
ability of neural networks to model non-linear functions and time series [2,3]. However, neural
network applications in speech signal processing have tended to focus on extracted feature
spaces such as LPC coe�cients for their inputs [5], due mainly to the importance of LPC
parameters in vocal tract identi�cation.

Work has been undertaken using the residuals of LPC prediction for the identi�cation of
non-linear speech elements [8] and this paper extends this concept to use RBFNs for the
on-line non-linear prediction of speech signals in the time sample domain using minimal prior
information about the signal. The prediction residual provides a powerful pitch pulse detector
and the improvement in pitch pulse detection over a comparable linear system suggests that
the non-linear model provides a more accurate representation of the speech.

RBFNs [1] are two layer networks comprising a hidden layer and an output layer. The
hidden layer contains nodes which perform a non-linear transformation of the input data.
The Euclidean distance between a parameter vector called a centre and the input data is
calculated and the result is passed through a non-linear function to generate the node output.
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Figure 1: Recursive radial basis function network

The Euclidean distance, , of a node can be written :-

= ( ) (1)

where is the centre for input on node , is element of the input vector , and is
the number of inputs to each node. The node output is given by :-

= �( ) (2)

where �( ) is a non-linear function. The thin-plate spline function, �( ) = log( ), is chosen
here for its non-localised response which accommodates the rapidly changing speech state-
space. The RBFN centres are selected randomly within the bounds of the speech state-space
and �xed to prevent the centres being biased by short term speech characteristics.

The output layer consists of a linear combiner which calculates the weighted sum of hidden
layer nodes, giving an output at node of :-

^ = (3)

where are the node weights and is the number of hidden nodes.

Recurrent RBFNs (RRBFNs) incorporate lagged network outputs as node inputs, hence noise
corrupted input signals are augmented with prediction outputs which have a reduced noise
content. The input vector at sample for a network with lagged speech samples, , and

lagged RBFN predictions, ^, is thus :-

= [ . . . ^ . . . ^ ] (4)

Figure 1 shows the RRBFN structure.
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The response of the RBFN is linear with respect to the output weight for each non-linear
node. This results in an output error surface with only one global minimum and allows a
Kalman Filter (KF) approach to be used to update the hidden layer weights and reduce the
mean squared prediction error. The KF equations for updating the hidden layer weights are :-

= ^ + ^ ^ (5)

=
1 ^ (6)

� = � + (7)

where is the KF gain and is the prediction error covariance matrix. � is the vector of

hidden layer weights, is the prediction error ^ , and ^ is the vector of node outputs .

is a forgetting factor which allows the KF to estimate system parameters which may be
varying by exponentially windowing previous samples. A compromise of adaptive speed and
previous sample bias must be achieved and Salgado et al. [6] suggest a value of 0 95 0 99
although this can be made adaptive based on the �lter error information content. An optimum
�lter generates constant error information for a signal with a Gaussian noise driving source,
but larger errors occur when the source signal changes, such as at pitch events [7]. The �lter
error information is the weighted sum of squares of the residual errors, :-

= (8)

which can be expressed recursively as :-

= + 1 ^ (9)

Applying a constraint of constant error information, = = , allows a variable
forgetting factor (VFF), , to be de�ned from equation (9) as :-

= 1 1 ^ (10)

Large prediction errors occur at the instant of glottal closure resulting in a small value of .
Since the e�ective memory of the system is 1 (1 ) samples, the Kalman �lter estimates
are based on a shorter window of speech allowing rapid adaptation to the changing dynamics.
This creates a sharp error at the point of closure which is rapidly eliminated by the changing
forgetting factor, observed against the average �lter error these peaks are candidates for the
onset of the pitch pulse. Simple post-processing techniques can then be used to select the
most likely pitch positions from these pulse candidates [9].
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3. NETWORK ADAPTATION
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Figure 2: Filter residuals for \eight" at a) 21dB, b) 3dB

An RRBFNwith 20 hidden layer nodes was implemented as a one step ahead predictive speech
�lter with an input vector, , comprising 6 speech samples and 3 lagged predictions. This
was found to be the minimum network speci�cation required to give good pitch detections in
noise. The network was compared with a 20 node RBFN using only 6 speech samples and a
Kalman �lter where the network weights were connected directly to six speech samples. The
network weights were updated using the KF equations, (5..7) and a constant forgetting factor
of = 0 95 was found to give the best compromise of signal adaptation and pitch detection.

Lowering the SNR to 3dB considerably deteriorates the KF voice source estimate. The net-
works were tested using the utterance \eight" sampled at 20kHz with signal-to-noise ratios
(SNRs) of 21dB and 3dB. The eight sample mean squared �lter residuals were used to provide
an estimate of the voice source signal and the results are shown in �gure 2. At a SNR of
21dB both the RRBFN and the RBFN provide a powerful pitch pulse detector an order of
magnitude better than the KF results, consequently the e�ects of noise are more signi�cant
in the interpretation of the KF prediction error. The RBFNs also detect the onset of the
fricative /t/ after the stop, but does not show the noise source of the fricative.

The RBFN, however, produced a clear voice source estimate with a noise oor equal to that of
the KF and allowed accurate pitch detection to be maintained. Because the RBFN prediction
is based on only six lagged noisy speech samples, the voice source estimate still contains a large
noise presence. The RRBFN, though, was able to reduce the noise oor between pitch events
and produced sharper residual peaks as the recursive elements provided a signal estimate with
reduced noise content. A consequence of this was that estimation errors which were fed back
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4. PITCH CANDIDATE DETECTION
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Figure 3: Pitch track for a male TIMIT speaker

produced signi�cant peaks in the non-voiced areas of speech which were later eliminated by
a pitch post-processing algorithm.

The RRBFN was extended to include the variable forgetting factor of equation (10). was
replaced by the voice source estimate and was replaced by the mean squared �lter residual
over several pitch periods. A lower limit was set for such that = [ 0 8] and a gain
factor, = 0 15, was introduced to equation (10) to prevent large prediction errors erasing
the �lter memory, giving :-

= 1 1 ^ (11)

This approach produced a lower noise oor on the �lter residual prior to a pitch event where
the error information is constant and was found to produce the most reliable pitch candidates
for the post-processing algorithm.

An RRBFN pitch detector and associated post-processing algorithms were applied to real
speech obtained from the DARPA TIMIT speech database. Pitch candidate selection was
based on thresholding the voice source estimate at twice its standard deviation over several
pitch pulses, producing a single pulse as the error exceeds the threshold.
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5. PITCH POST-PROCESSING AND TRACKING
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Figure 4: Pitch track for a female TIMIT speaker

Candidate pulses were then �ltered using statistical methods to select the most likely pitch po-
sitions. A window of 15 pitch candidates was selected and the median and standard deviation
of the estimated pitch periods calculated. The median is preferred because it is less inu-
enced by extreme pitch estimation errors, producing more consistent traces when it is used
to calculate the fundamental frequency. When the median pitch period exceeds the standard
deviation this indicates a consistent pitch period within the candidate window. The speech is
considered voiced and candidates in the window with a pitch within one standard deviation
of the window median are selected as the pitch pulses. Discarded pulses are eliminated from
the window and the remaining pitch period estimates are adjusted accordingly.

Figure 3 shows the pitch frequency track obtained in the above way for the TIMIT phrase
\Don't ask me to carry an oily rag like that" spoken by a male. The track is plotted for
what is determined as voiced speech and overlaid onto the FFT derived spectrogram. The
algorithm provides a very clear indication of the areas of voiced speech, with no obvious mis-
classi�cation of unvoiced speech as voiced. The largest errors occur in quiet speech where the
SNR is lowest and the speech dynamics are changing, producing pitch estimates with variable
statistics.

The pitch tracks lie along the fundamental resonance in the spectrogram which is further
evidence for the correct determination of the pitch period, and closer inspection reveals that
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the selected pitch pulses do occur at the instant of glottal closure. The track is not smooth
because the median pitch value is used to calculate the frequency instead of the mean. Results
show that the mean value produces smoother plots, but these were severely a�ected by poor
pitch estimates and the resulting tracks are not as accurate.

In an attempt to stretch the validity of the algorithm this experiment was repeated using
the phrase \She had your dark suit in greasy wash water all year" spoken by a female and
the result is shown in �gure 4. Again there is good identi�cation of voiced speech and the
pitch tracks appear to follow closely the fundamental spectral resonance. However, there is
a greater tendency for the pitch track to incorporate incorrect pitch estimates, raising the
estimated fundamental frequency. This is largely because voice source thresholding is now
being performed over three times the number of pitch pulses as that of male speech. This
could be overcome by adapting the pitch selection and post-processing algorithms to account
for the reduced pitch period, although this makes the algorithm speaker dependent.

This paper has demonstrated the ability of RBFNs to estimate the non-linear system dy-
namics of speech. The prediction residual provides a powerful pitch pulse predictor and the
improvement in pitch detection over a comparable linear predictor supports the proposition
that a non-linear model provides a more accurate description of the speech signal. Although
signal noise corruption causes signi�cant deterioration of this result, incorporating recursion
into the structure provides a reduced noise signal estimate which improves prediction.

The resulting front end speech processor has proved to be an excellent source of pitch can-
didates for pitch post-processing, achieving good performance in a voiced/unvoiced classi�er
and pitch tracking algorithm. The pitch pulses are suitable for pitch synchronous estimation,
although it is preferable to use the initial voice source estimate as a more accurate guide to
the areas of consistent dynamics within speech. The addition of a smoothing algorithm to
the pitch tracks would provide a suitable estimate of pitch frequency for LPC synthesis.

The algorithm has performed well in both male and female speech, with only limited
information. Although in this paper the stages of processing have been implemented se-
quentially - prediction, detection, selection - the algorithm can be implemented on-line with
statistical calculations being based on short term characteristics over eight samples and long
term characteristics over a few pitch pulses. This will enable further work to concentrate on
the incorporation of the pitch into the prediction model.

The authors wish to thank DRA Malvern for the CASE Studentship associated with this
work.
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