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This paper describes the results of some simple vowel-discrimination experiments based on

isolated frames of data. That data was produced from short segments taken from the TIMIT

database, and took the form of the new, linear frequency-scale, version of the Reduced Au-

ditory Representation (RAR) [1]. The recognition was performed using standard linear dis-

criminant techniques, albeit with a rather lower dimensionality than normal because of the

reduced number of classes which were to be identi�ed.

The RAR is a method for analysing acoustic signals (speech in particular), which is based on a

functional model of the peripheral auditory system. It includes models of adaptation, masking

and loudness compression, and exhibits most of the phenomena observed in physiological

experiments to a reasonable degree of accuracy.

Although the RAR has evolved over many years [2,3,4,1], it has consistently been founded on

the premise that it is not solely the mean neural �ring rate which characterises sounds in the

auditory nerve. Other features are just as likely to be important to human perception (and in

some cases, more so). The RAR therefore provides four parameters for each point along the

cochlear partition and for each point in time: a mean �ring rate (related to signal intensity

and encoded on a logarithmic scale), an adaptation factor (also logarithmically encoded), a

dominant frequency and a phase delay between adjacent channels. The �rst two of these are

determined by the static and dynamic aspects of the signal amplitude, respectively, while the

last two are functions of the component frequencies.

Of particular interest, both for signal characterisation and for source separation, are the syn-

chrony between neurons responding to a common signal component, and that between those

responding to di�erent components originating from the same source. These `synchrony' fac-

tors are essentially functions of the phase structure of the basilar membrane displacement,

and so are not present in long-term neural �ring rate data. They can, however, be charac-

terised by phase derivatives, which are (fortunately) slow to change in most cases. This is the

approach taken in the RAR analysis.

1. INTRODUCTION

2. THE `ORIGINAL' RAR

2.1 The Basic Principle

2.2 The Need for Phase Information
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If the codebook were too small, or the centres placed in inappropriate positions, information would be lost

and recognition performance degraded. Conversely, if it were large enough to ensure that there were centres

near every conceivable region of importance, then the amount of training data needed to build statistically

reliable probability estimates, would be vast.

. . .

By making estimates of the phase derivative with respect to cochlear position, as well as that

with respect to time, a more complete description of local synchrony is obtained. Global syn-

chrony is more problematical though, since attempts to identify synchrony between arbitrary

combinations of signal components tend to lead to a `data explosion' with too many possible

ways of combining those components. This problem has not yet been addressed in the RAR.

The other underlying principle behind the RAR analysis is that it is kept mathematically sim-

ple (and hence easy to understand, e�cient to compute on DSP hardware and with predictable

behaviour, even when presented with complicated signals such as speech). In practice, this

means that all four parameters are calculated as weighted averages of instantaneous estimates

of the respective values. Thus each parameter is the result of integrating two functions over

a common window, and then dividing one by the other.

The nature of the weighting function (the denominator in the preceding description) is chosen

so as to produce `correct' results, assuming that the window is large enough, while emphasising

the high-energy sections within the signal. In this way, the parameter estimates tend to reect

whichever of the components is `dominant' at any given point. The RAR is therefore less

blurred than a more conventional analysis might be when presented with a composite signal.

To avoid the problems of pitch harmonics and/or pitch pulses disrupting the RAR data

and causing subsequent misrecognition, a `position-tolerant distance measure' was introduced

in [3]. This, together with the long duration of the RAR's temporal integration window,

produced extremely encouraging results. The next step in this line of investigation should

have been to extend the `position-tolerant' concept to include the temporal dimension and

avoid the integration process altogether. However the method, as presented in [3] and [4],

was based on the idea that the recogniser was performing a pattern-matching task, rather

than any form of parametric modelling. This meant that the new distance measure was

inapplicable to continuous-distribution hidden Markov models (HMMs). As it turned out, it

was also inappropriate for discrete-distribution HMMs, because of the high dimensionality of

the RAR data and the consequent di�culty of performing sensible vector quantisation .

One possible solution to these problems might be to use the `position-tolerant distance mea-

sure' in a `fuzzy vector quantiser'. This approach is currently being investigated, although

the results described here were obtained using a more obvious and somewhat less interesting

technique.
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2.3 Back to Basics

3. RECOGNISING SPEECH FROM ITS RAR
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Figure 1: RAR of a typical TIMIT utterance optimised for resolution of events with char-

acteristic duration of 12.5 ms and bandwidth of 400 Hz. Each band represents one RAR

parameter. From the top down, these are the delay, frequency, adaptation and intensity,

respectively.

To overcome the problems associated with changes in pitch, some form of spatial integration

was required (in addition to the temporal integration already inherent in the calculation of

the RAR parameters). This spatial integration has not been directed by theories of speech

perception (although this has been investigated in some detail by others at She�eld [5]).

Instead, a purely pragmatic approach has been taken: it has been assumed that the highest

pitch likely to be analysed is 400 Hz, so the outputs of all channels with centre frequencies

within about 400 Hz of any chosen reference point are weighted and summed as part of the

existing (previously solely temporal) averaging process. Similarly, the maximum expected

pitch period of 12.5 ms is used to de�ne the extent of the temporal averaging. An example

of an RAR designed to give these respective degrees of temporal and spectral resolution is

shown in �gure 1.

This description is actually somewhat oversimpli�ed, since the form of the weighting in both

spatial and temporal dimensions is chosen quite carefully, so as to make the most of the
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4. MODIFYING THE RAR

4.1 Spatio-Temporal Integration
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Figure 2: RAR of a syllable extracted from a typical TIMIT utterance optimised for resolution

of events with characteristic duration of 1.25 ms and bandwidth of 40 Hz. Each band rep-

resents one RAR parameter. From the top down, these are the delay, frequency, adaptation

and intensity, respectively.

resolution available at the various channel outputs [1].

Although the aim of this process is to remove any evidence of pitch variation, it should be

noted that it can have other advantages if the data is, say, intended for visual representation,

rather than automatic speech recognition. In such cases, it need not result in information

loss since the length of the temporal window can actually be reduced in proportion to the

broadening in the spatial dimension. Figure 2 shows an example of such an RAR, clearly

revealing both formant structure and individual pitch events.

This is especially useful for the low frequency channels of the auditory model, because the

minimum length of the temporal window should really be set inversely proportional to the

bandwidth of the respective basilar membrane �lter. The low frequency channels have narrow

bandwidths, so they would otherwise require excessively long temporal averaging windows.

The original RAR often exhibited artifacts in these channels because of inadequate window

length (although they were not deemed important because those channels were phonetically

uninformative anyway). By way of contrast, the new version has not produced any visible
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4.2 Information Loss
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artifacts for any of the data so far analysed.

Because the spatial integration reduces the low-frequency resolution of the analysis to 400

Hz, there is little sense in spacing the reference frequencies according to the same ERB-rate

scale [6] as was used for the original auditory model. A linear frequency scale is more natural

when the resolution is constant, and that is the one which has been used in this paper. This

results in a slight over-sampling of the high-frequency region (where the resolution is limited

by the bandwidth of the basilar membrane �lter), but the recogniser described below is not

adversely a�ected by over-sampling, so this is unimportant.

The task described here is speaker-independent phonetic classi�cation of the phonemes /AE/,

/EH/ and /ER/, based solely on isolated frames of RAR data. This task was selected because

it is reasonably taxing (these three sounds are often confused by conventional phonetic recog-

nisers and the absence of any context makes the task more di�cult still), while the results

are easy to interpret because of the small number of classes involved. Furthermore, we would

assert that any recogniser which can successfully distinguish these sounds should be able to

classify any vowel with a similar degree of reliability.

The data used in these experiments were all the examples of the phonemes labelled /AE/,

/EH/ and /ER/ in dialect region 5 of the TIMIT database. A single dialect region was chosen

because it was felt that there was no mechanism within the RAR or the recogniser described

below which could be expected to cope with inter-dialect variations. A practical recogniser

could be expected to incorporate some form of dialect model. Dialect region 5 was selected

because it contained a fairly large number of speakers and had the nearest to equal ratio of

male to female (albeit still only 37% female).

Both male and female speech have been used because there is no absolute boundary which

can be drawn (purely on the grounds of acoustic evidence) between the two. Some speakers

exhibit speech patterns which are di�cult to classify with any degree of certainty, and if

are to be included, how can one justify the exclusion of others merely because they happen

to fall more de�nitely into one or other class? The RAR's spatio-temporal integration is

designed to be broad enough to suppress any gender-related pitch variations in any case,

while the corresponding formant variations would be better handled by clustering

of the data (based purely on acoustic evidence) rather than by the use of `biological' labels,

which may group dissimilar acoustic signals together merely because they happen to have

been produced by speakers of the same gender.

Each phoneme was processed with the RAR programme, together with a small amount of the

they

automatic
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4.3 Frequency Scale

5. RECOGNITION EXPERIMENTS

5.1 Data

5.2 Processing
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intensity adaptation frequency delay accuracy ranking

56.3% 8

51.4% 11

57.8% 5=

58.6% 4=

55.6% 9

58.6% 4=

56.8% 7

58.6% 4=

54.8% 10

57.6% 6

57.8% 5=

58.6% 4=

59.1% 3

59.6% 2

62.0% 1

Table 1: Recognition results for all combinations of RAR parameters

preceding data (to avoid onset transients). A single frame near the middle of each phoneme

was then extracted and used for recognition.

The RAR was calculated using 56 channels in the basilar membrane model, which were then

combined to produce 17 output channels, each with a reference frequency separated from

those of its neighbours by 200 Hz. The temporal and frequency resolutions were speci�ed as

12.5 ms and 400 Hz, respectively.

The recognition was performed by means of linear discriminants [7]. These were calculated to

give maximummean inter-class distance for a �xed (unit) mean intra-class distance, evaluated

over the training set [8, pages 40{47]. Each class was then represented by the mean of all the

training data for each class, and recognition performed by �nding the nearest such mean to

each unknown point selected from the test set (in the linear discriminant sub-space).

Some preliminary tests were conducted which showed that recognition performance rarely

changed when the number of discriminants was increased above two. This observation was

reinforced by observation of the Eigenvalues used to identify the most useful discriminants:

only the �rst two were ever signi�cantly greater than unity, indicating that they corresponded

to the only Eigenvectors which produced a useful degree of discrimination. However, the

experiments described here used three, just to be on the safe side. Note that this number

is lower than would be required for a more general phonetic recogniser, and is only this low
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5.3 Recognition
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because the number of classes is unusually small. It is anticipated that a number closer to

eight might be required for more general applications (as was the case in, for example, [7]).

Recognition was performed separately for every possible combination of RAR parameters to

assess the degree of redundancy in the data. The results are shown in table 1.

From the results presented here, it appears that a simple linear classi�er is probably inade-

quate for speaker-independent recognition of context-free RAR data frames.

However, the indication o�ered by the ranking of the various combinations of parameters is

quite clear: the more alternative representations are presented to the recogniser, the better. It

also appears (from the higher ranked combinations, which seem to follow more de�nite trends)

that it is the amplitude-independent parameters which are most useful (as one would expect),

but that absolute amplitude does still signi�cantly improve performance, when presented in

addition to the other data.

These conclusions are likely to be applicable to other forms of data as well, and it would

be interesting to compare these results with similar ones obtained via non-auditory methods

(linear prediction, group delay, �lter-bank, etc.).
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