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ABSTRACT

We describe a speechreading system that uses both, shape
information from the lip contours and intensity information from
the mouth area. Shape information is obtained by tracking and
parameterising the inner and outer lip boundary in an image
sequence. Intensity information is extracted from a grey level
model, based on principal component analysis. In comparison to
other approaches, the intensity area deforms with the shape
model to ensure that similar object features are represented after
non-rigid deformation of the lips. We describe speaker
independent recognition experiments based on these features and
Hidden Markov Models. Preliminary results suggest that similar
performance can be achieved by using either shape or intensity
information and slightly higher performance by their combined
use.

1. INTRODUCTION

Visual information of the speaker’s face provides speech
information which is often complementary to the acoustic signal
and which can improve the performance of speech recognition
systems [1 ][2 ]. One of the main difficulties in speechreading is
the extraction of visual speech features. It is still not well known
which features are important for speech recognition and how to
represent them. Although it is generally agreed that most visual
speech information is contained in the inner and outer lip
contour, it has also been shown that information about the
visibility of teeth and tongue provide important speech cues
[3 ][4 ]- Particularly for fricatives, the place of articulation can
often be determined visually, i.e. for labiodental (upper teeth on
lower lip), interdental (tongue behind front teeth) and alveolar
(tongue touching gum ridge) place. Other speech information
might be contained in the protrusion and wrinkling of lips.

Speechreading approaches can be classified into image-based
and model-based systems. Image-based systems use grey level
information from an image region containing the lips either
directly or after some processing as speech features. Most image
information is therefore retained, but it is left to the recognition

system to discriminate speech information from linguistic
variability and illumination variability. Model-based systems
usually represent the lips by geometric measures, like the height
or width of the outer or inner lip boundary or by a parametric
contour model which represents the lip boundaries. The
extracted features are of low dimension and invariant to
illumination. Model-based systems depend on the definition of
speech related features by the user. The definition may therefore
not include all speech relevant information and features like the
visibility of teeth and tongue are difficult to represent.

We have previously described a speechreading system [5 ] based
on shape features which represent the outline of the inner and
outer lip contour and their modelling by Hidden Markov Models
(HMMSs). The system performed well for a speaker independent
recognition task, but it did not contain any intensity information
which might provide additional speech information. Here we
extend this system by augmenting the feature vector with
intensity information extracted from the mouth region. We
evaluate the contribution of intensity information separately and
in combination with shape features.

2. SHAPE MODELLING

For modelling the shape variability of lips, we use an approach
based on active shape models [6 ][7]. These are statistically
based deformable models which represent a contour by a set of
points. Patterns of characteristic shape variability are learned
from a training set, using principal component analysis (PCA).
The main modes of shape variation captured in the training set
can therefore be described by a small number of parameters. The
main advantage of this modelling technique is that heuristic
assumptions about legal shape deformation are avoided. Instead,
the model is only allowed to deform to shapes similar to the
ones seen in the training set. Any shape x representing the co-
ordinates of the contour points can be approximated by

X=X +Pb, M
where X is the mean shape, P the matrix of eigenvectors of the

covariance matrix and b a vector containing the weights for each
eigenvector. Only the first few eigenvectors corresponding to the



Figure 1: left: shape model for the inner and outer lip contour
with profile vectors, perpendicular to the lip contours; right: lip
model with mean shape and mean intensity.

largest eigenvalues are needed to describe the main shape
variability.

We built and tested two models of the lips: Model 1, which
represents the outer lip boundary only and Model 2, which
represents the outer and inner lip boundary. The models are used
to locate, track and parameterise lip movements in image
sequences. The weights for the shape modes are recovered from
the tracking results and serve as features for the recognition
system.

3. INTENSITY MODELLING

Several approaches for speechreading, based on intensity
information have been developed [8 , 9, 10 ]. Our approach for
extracting intensity information is based on principal component
analysis and is related to the ‘eigenlips’ approach described by
Bregler et al. [9] and to the ‘local grey-level models described
by Lanitis et al. [11 |. Bregler et al. placed a window around the
mouth area on which PCA was performed. Since the window
does not deform with the lips, the eigenvectors of the PCA
mainly account for intensity variation due to different lip shape
and mouth opening. We already obtain detailed information of
the lip shape from our shape model by a small number of
parameters and are therefore mainly interested in intensity
information which is independent of lip shape. We therefore
follow an approach similar to the one described in [11], where
one dimensional profiles are sampled perpendicular to the
contour at each model point as shown in Figure 1. But instead of
using local grey level models we construct a global grey-level
model by concatenating the vectors of all model points to form a
global intensity vector h. We then estimate the covariance
matrix of the global profile vectors over the training set and
perform PCA to obtain the principal modes of profile variation.
Any profile h can now be approximated by

h=h+Pgb,, )

where h is the mean profile, P, the matrix of the first column
eigenvectors, corresponding to the largest eigenvalues and b, a
vector containing the weights for each eigenvector. The mean
shape and profile of Model 2 is shown in Figure 1.

Figure 2: Example images of a person saying the word “three”
with tracking results using Model 2.

4. LIP TRACKING: MATCHING THE
INTENSITY MODEL TO THE IMAGE

The profile model was initially designed and tailored to enable
robust tracking of the lips rather than to extract speech
information from the profile vectors. The profile model is used
to describe the fit between the image and the model. During
image search the model is aligned to the image as closely as
possible by calculating the optimal weights for the first few
eigenvectors. The mean square error (MSE) between the aligned
profile and the image is used as cost and a minimisation
algorithm deforms the shape model to find a minimum cost. The
profile weight vector for aligning the model is found using

_pT =
bg =Py (h—=nh) 3)
and the cost F is obtained using
E=(h-h)" (h-h)-b,"b,. “)

The profile vectors deform with the shape model and therefore
always represent the same object features. The weight vector b,
provides information about the principal modes needed to align
to the image. We recover the weights from the tracking results
and use them as speech features. A tracking sequence is shown
in Figure 2.

S. SPEECH MODELLING

The weights for the shape model and the intensity model are
extracted at each image frame to form frame dependent feature
vectors for the recognition system. We use either the shape
parameters or the intensity parameters or both parameter sets as
feature vector for the recognition system. Assuming accurate
tracking performance, the shape and intensity parameters are
invariant to translation, rotation and scale. The shape parameters
are also invariant to illumination. The intensity modes account
for both, illumination differences and differences due to the
visibility of teeth and tongue and protrusion.

Dynamic speech information is important and often less
sensitive to inter speaker variability, i.e. intensity values of the
lips will remain fairly constant during speech while intensity
values of the mouth opening will change during speech. The
intensity values of the lips will vary between speakers but the
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Figure 3: Recognition accuracy for Model 1, using individual
intensity features (I) and delta features (dI) for the first 12
principal profile modes.
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Figure 4: Recognition accuracy for Model 2, using individual
intensity features (I) and delta features (dI) for the first 16
principal profile modes.

temporal changes of intensity might be similar for different
speakers. Dynamic features will therefore be more robust to
different illumination and different speakers. We performed one
set of tests by including temporal differences of the parameters
in the feature vector (delta parameters).

In analogy to acoustic speech recognition we represent an
utterance as a sequence of speech vectors. We model the feature
vectors with Gaussian distributions and their temporal
characteristics with Hidden Markov Models (HMMs). We used
whole-word HMMs and trained one HMM for each word to be
recognised.

6. EXPERIMENTS

We performed visual speech recognition experiments using the
Tulips 1 database [10]. The database consists of grey level image
sequences of the first four digits, each spoken twice by 12
subjects, 9 male and 3 female. The images contain the mouth
area only and are digitised at 30 fps, 100x75 pixels, 8 bits per
pixel. We performed speaker independent tests to see how well
the system generalises for new speakers. Due to the small size of
the database, the leave-one-out method was used for the tests,
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Figure 5: First three principal modes of grey-level variation for
Model 2.
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Figure 6: The three profile modes of Model 2 with the highest
individual recognition accuracy.

i.e. 11 subjects were used for training and the 12th subject for
testing. The whole procedure was repeated 12 times, each time
leaving a different subject out for testing. Individual results were
averaged over all speakers. We trained one HMM per word class
with 6 states and one mixture component with diagonal variance
vector. The Baum-Welch algorithm was used for testing and the
Viterbi algorithm for recognition. All experiments were
performed using the HMM toolkit HTK V1.5.

In order to evaluate which components contribute most towards
recognition performance, we performed recognition tests by
using (i) all parameters, (ii) each parameter individually and (iii)
the first few parameters obtained from (ii) with the highest
accuracy. Model 1 consisted of 8 shape modes and 10 profile
modes, Model 2 consisted of 10 shape modes and 20 profile
modes.

7. RESULTS

Recognition rates using all intensity parameters with delta
parameters were 78.1 % for Model 1 and 85.4 % for Model 2.
These results indicate that the system is quite robust to



Model Intensity Shape Shape +
Intensity

Single 82.29 83.33 86.46

Double 89.58 81.25 90.62

Table 1. Recognition results using shape and intensity
parameters.

illumination differences which are accounted for by some of the
intensity parameters. Figure 3 and Figure 4 display the
recognition contribution of each individual component of Model
1 and Model 2, respectively. Results are given for static features
(D) and for static and dynamic features (I + dI). It is interesting to
note that the single contour model achieved high recognition
performance, although it only describes grey-level information
near the outer lip boundary. Including delta parameters improved
the performance in almost all cases. The first few modes
corresponding to the largest eigenvalues make very little
contribution towards recognition accuracy for both models.

To visualise the principal modes of grey level variation we
simply interpolated the grey levels between the profile vectors to
fill in the lip area. The first three principal modes of profile
variation for Model 2 are shown in Figure 5. The first mode
accounts for global illumination, while the second and third
mode mainly seem to account for lighting direction. The second
mode also describes the intensity inside the mouth. Figure 6
shows the three modes with the highest single recognition
conftribution. All three modes seem to account for different
illumination inside the mouth.

Table 3 summarises the results using only the first few best
features for either shape parameters or intensity parameters or
both. Delta parameters were included in all experiments.
Recognition accuracy for Model 2 is considerably higher for
intensity parameters than for shape parameters. This might be
due to the additional information captured from the mouth
opening. The combination of both feature sets has lead to the
best overall recognition accuracy of 90.6 %. This is about
equivalent to the performance achieved by humans with no
lipreading knowledge which were asked to lipread on the same
database [10].

8. CONCLUSIONS

We have described a speechreading system that uses both, shape
and intensity information. An important property of the intensity
model is that it deforms with the lip contour model in order to
represent the same object features after lip movements.

Recognition tests using only intensity parameters indicate that
much visual speech information is contained in grey level
information which might account for protrusion or visibility of
teeth and tongue. Recognition performance was slightly higher
for intensity features than for shape features and their combined
use outperformed both feature sets.
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