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ABSTRACT

This paper presents a new approach to continuously-adaptive
system modelling, designed for the analysis of autoregressive
(AR) systems excited by signals including an impulsive
component. Voiced speech is well represented by such a model,
and is used to demonstrate the advantages of the new approach.
These include:

1. AR model parameter estimates are more stable in
the region of pitch events.

2. A faster adaptation rate can be used, reducing the
recovery time after plosives or other sudden
changes in signal statistics.

The new method is based on multiple simultaneous estimates of
each sample, using separate but related estimators. The general
concept is illustrated here using a linear prediction (LP) approach
to continuously-adaptive autoregressive (AR) modelling, based on
the least mean square (LMS) algorithm.

1. INTRODUCTION

In many applications it is unsatisfactory to treat speech as a
piecewise-stationary signal. This precludes the use of frame-based
analyses to characterise the signal, and so some form of
continuously-varying parameterisation is desired.

A common approach is to use a gradient descent algorithm to
improve the accuracy of the parameterisation incrementally as
each new sample becomes available [1, 2]. These methods
generally assume that the the vocal apparatus is driven by a
stationary, stochastic signal. This is quite accurate during those
periods when the vocal folds are closed [3], but is quite
unrealistic at the moments of opening and closure.

Consequently, the parameters yielded by traditional versions of
this method exhibit undesirable perturbations, especially at the
onset of each pitch pulse. At this point, the high value of the
prediction error causes the estimated model parameters to change
rapidly (even though the vocal tract transfer function is only
changing slowly). To minimise these problems, the convergence
rate of the adaptation algorithm is generally set much lower than
could otherwise be possible [4].

The linear prediction approach to continuously adaptive system
modelling is exemplified by the LMS algorithm. Firstly, a
weighted sum of previous signal values is formed:
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where xn is the nth input value, am is the mth prediction
coefficient, and $xn  is the predicted value of xn. The error is then

calculated:
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The sequence e[n] then forms the residual signal, whose power is
minimised by successive application of the LMS steepest descent
update rule:
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In these equations, µ deterimines the speed of convergence, and is
chosen according to the properties of the data. Too small a value,
and the system will only adapt very slowly; too large a value and
the adaptation will not converge.

2. THE FORWARD-BACKWARD
MINIMUM ERROR METHOD

The conventional LMS approach described in equations 2 and 3
can be badly affected by outliers in the sample distribution of the
stochastic process assumed to be driving the AR system. If an
impulse is present in the data, it will cause a large error, which
will then be prolonged by the infinite-duration impulse response
of the AR system under consideration. That error will give rise to
a sudden change in the predictor coefficients, in an attempt to
model it as part of the AR transfer function.



On the other hand, during such periods a backward estimator (i.e.
a predictor operating backwards in time) can still produce an
accurate estimate of the signal, provided the respective
coefficients are known. For real, stationary signals, the
coefficients for forward and backward estimation are identical,
and a backward estimator could just as easily be used to estimate
the predictor coefficients:
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where $′xn  is the backward estimate of xn. Obviously, this simple

solution would have little advantage in a practical system, since
the backward estimator would be disrupted by any impulses just
prior to their occurrence, in the same way as a predictor is just
afterwards.

However, one possible solution can be found by considering both
a forward and a backward estimate of the same sample: the more
accurate of the two estimates can be found, and the prediction
coefficients updated using only the equations for the respective
estimator. This can be termed a forward-backward minimum error
(FBME) update scheme, but is different to the forward-backward

adaptation employed in lattice filters, since here it is the same
sample which is being estimated in both directions.

3. OPTIMISING µ

In many applications, the only practical method for optimising the
speed of adaptation is by experiment. Figure 1 shows some typical
data obtained when natural speech is processed using the
conventional LMS coefficient update (equation 3), when using
LMS updating based on backward prediction (equation 4), and
when using the new forward-backward minimum error (FBME)
approach. The average power of the forward residual, e[n],
relative to the input, x[n], is plotted (in dB) as a function of the
adaptation parameter, µ.

There are clear optima at µ = 7.5 for the conventional (forward)
LMS case, µ = 8.5 for the backward LMS, and  µ = 11 for FBME.
Thus, despite the degradation of about 1.8dB which results from
FBME, it is able to adapt nearly 50% faster than conventional
LMS and 30% faster than the backward version.

Of interest is the observation that backward prediction appears to
perform noticeably better than forward prediction when updating
the predictor coefficients. It is also of note, that the performance
of the FBME method is much less severely affected by over-
specifying  µ.
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Figure 1: Variation in mean processing gain for natural speech as a function of adaptation parameter, µ, for three
different update algorithms.



4. SOME COMPARISONS

Although the experiments in section 3 demonstrated that it was
possible to use a higher rate of adaptation with the new method, it
is necessary to look at some examples of the residual signals
produced by the respective predictors, in order to visualise the
causes and effects of the differences. There follow some examples
of both synthetic and natural data to illustrate the behaviour of the
FBME system.

4.1. Synthetic Data

To test the response of the FBME method to an ‘ideal’ data
sequence, a set of 12th order predictor coefficients were extracted
from a steady vowel taken from a sample of natural speech. The
corresponding AR system was then driven by a sequence of
randomly-occurring, random-valued impulses. This produced the
waveform shown as a dotted line shown in figure 2. The forward
prediction error of the FBME analysis, en, is shown as a solid line
in the same figure.

For comparison, the dotted line in figure 3 shows the
corresponding residual for the conventional LMS method. It is
clear that, on the occurrence of each impulse, the LMS method is
severely disrupted, with rapid over-compensation and consequent
prolongation of the large error component. Although slightly
perturbed by each impulse, the FBME method  does not prolong
the disturbance: The only large  error occurs at the  moment at
which the impulse occurs.

In these and the graphs which follow, the sampling rate was
16,000 samples per second, so the total time interval shown in
each graph corresponds to 200 samples.

4.2. Natural Data

Corresponding graphs have been plotted in figures 4 and 5 for a
segment of voiced speech. The speech was preemphasised and µ
was set to 10. The FBME method behaves much as it did on the
synthetic data. However, the residual for the conventional LMS
algorithm in figure 5 shows a transient period of instability
following each pitch event. This becomes increasingly common if
the adaptation rate parameter, µ, is set larger.
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Figure 2: Forward residual signal from a 12th order ‘minimum
error’ method (solid line) applied to the output of an ideal 12th

order AR system driven by random impulses (dotted line).
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Figure 3: Synthetic source (as in figure 2) forward residual
signals from a 12th order ‘minimum error’ method (solid line) and
a conventional 12th order ‘forward prediction’ LMS algorithm
(dotted line).
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Figure 4: Forward residual signal from a 12th order ‘minimum
error’ method (solid line) applied to a segment of voiced speech
(dotted line).
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Figure 5: Natural speech (as in figure 4) forward residual signals
from a 12th order ‘minimum error’ method (solid line) and a
conventional 12th order ‘forward prediction’ LMS algorithm
(dotted line).

5. CONCLUSIONS

It has been shown in passing in this paper that the LMS algorithm
is better suited to modelling of speech when applied backwards in
time. This appears to be due to the temporal asymmetry in the
ringing produced by the vocal tract resonances.

However, the main conclusion to be drawn from this work is that
the automatic selection of forward or backward (in time) versions
of the LMS algorithm can be beneficial if the fastest adaptation
rate is required.

It has been demonstrated that even a simple decision based on the
local magnitude of the forward and backward residuals is
sufficient to allow nearly 50% faster adaptation. It seems likely
that more sophisticated algorithms for selecting the optimum
update from the two candidates could yield even better
performance.
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