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ABSTRACT

This paper describes a novel approach for visual speech
recognition. The shape of the mouth is modelled by an
Active Shape Model which is derived from the statistics
of a training set and used to locate, track and parameterise
the speaker’s lip movements. The extracted parameters
representing the lip shape are modelled as continuous
probability distributions and their temporal dependencies
are modelled by Hidden Markov Models. We present
recognition tests performed on a database of a broad
variety of speakers and illumination conditions. The
system achieved an accuracy of 85.42 % for a speaker
independent recognition task of the first four digits using
lip shape information only.

1. INTRODUCTION

It has been shown that the robustness and accuracy of
automatic speech recognition can be improved by the use
of visual information of the speaker’s lip movements in
addition to the acoustic speech signal [1]. The main
difficulty in incorporating visual information into an
acoustic speech recognition system is to find a robust and
accurate method for extracting important visual speech
features. The two main approaches for extracting speech
information from image sequences are the image based
approach [1, 2, 3] and the model based approach [4,5].

In the image based approach the image intensities are
pre-processed and then used as the feature vector. Pre-
processing normally consists of filtering and dimension
reduction. The advantage of this approach is that no data
is thrown away. The disadvantage is that it is left to the
classifier to learn the nontrivial task of finding the
generalisation for translation, scaling, rotation, illumina-
tion and linguistic variability. Another disadvantage is the
high dimensionality and high redundancy of the feature
vector.

In the model based approach a model of the visible
speech articulators, mainly the lip contours, is built and
its configuration is described by a small set of parameters.

The advantage of the model based approach is that
important features are represented in a low dimensional
space and are normally invariant to translation, rotation,
scale and illumination. A disadvantage is that a particular
model may not consider all relevant speech information.
The main difficulty in the model based approach is to
build a model which represents the lip shape efficiently
and which is able to locate and track the lip contours of
different speakers and under different illumination
conditions.

We describe a model based speechreading system
where a model of the lips is constructed from a training
set. The model is subsequently used to locate, track and
parameterise lip contours in image sequences. We show
how Hidden Markov Models (HMMs) can be used to
model visual speech and describe recognition tests purely
based on lip shape features.

2. LOCATING AND TRACKING LIPS

Deformable templates [6] have been proposed [4][5] to
locate and track lip contours, but because deformation of
the model is constrained by the initial choice of
polynomials, representing the contour, they are often
unable to represent various lip shapes in fine detail.
“Snakes” [7] on the other hand are able to resolve fine
contour details but shape constraints are difficult to
incorporate [8] and one has to compromise between the
degree of elasticity and the ability to resolve fine contour
details. Image search for deformable templates and
“snakes” is normally performed by fitting the model to the
edges of the image, assuming strong edges along the lip
contours. This assumption is often overestimated as lip
edges vary across speakers and depend on illumination,
visibility of teeth and mouth opening. Edges on the lower
outer lip contour are particularly hard to distinguish and
edges inside the mouth often originate from teeth.

We use an approach based on Active Shape Models
(ASMs) [9] to model, locate and track lip contours, which
is described in detail in [10]. These are flexible models
which represent the boundary or other significant loca-



tions of an object by a set of labelled points. ASMs use a
priori knowledge about shape deformation from the sta-
tistics of a training set which was labelled by hand. The
main modes of shape variation are projected into a linear
subspace obtained by Principal Component Analysis
(PCA). Any shape can therefore be approximated by a
linear combination of the mean shape and the first few
main modes of variation. No heuristic limits for shape
deformation are used. Instead we constrain each shape
parameter to lie within ± 3 standard deviations of the
training set which accounts for about 99% of variation.

We built two models of the lips, one representing the
outer lip contour and one describing the inner and outer
lip contour. Figure 1 shows the first 3 principal modes of
deformation captured in the training set for the double
contour model.

The models are then used to locate and track lips in
image sequences. During image search a cost function is
used which measures the fit between the model and the
image. We have found that image gradients are inappro-
priate for representing lip boundaries. Instead we use a
profile model which learns typical intensity values around
lip contours from the training set. We sample one-
dimensional intensity profiles gij of length n,
perpendicular to the contour and centred at model point i
for each training image j, as described in [9], but we
concatenate the profiles of all model points of a training
image j to form a global profile vector hj. Similar to
describing shape deformation, we constrain the main
modes of profile variation, captured in the training set, to
lie in a low-dimensional linear subspace which is
obtained by PCA. Any  profile in the training set can now
be approximated by

h h Pb= + . (1)

where h is the mean profile, P the matrix of the first
column eigenvectors, corresponding to the largest
eigenvalues and b a vector containing the weights for
each eigenvector.

The motivation for this approach is to build a model
which describes the mean intensity profile of the training
set and its main modes of variation which originate from
different speakers, different lighting conditions and
different “mouth states”. For example the profile inside
the mouth contains large intensity variation and depends
on the mouth opening and the visibility of teeth and
tongue.

We use the Downhill Simplex Method [11] for image
search, which performs a multi-dimensional minimisation
process. The model is first placed at an initial position in
the image, then the mean profile is aligned to the image
profile h as closely as possible using the first few modes
of profile variation. The profile weight vector is found
using

b P h h= −T ( ) . (2)

The cost E at a particular location and shape is calculated
as the mean square error (MSE) between the image
profile and the aligned profile model using

E T T= − − −( ) ( )h h h h b b . (3)

We assume equal prior probabilities of all shapes within
the deformation constraints and therefore do not include a
term for shape deformation in the cost function.

Locating the lips in the first frame of an image
sequence is performed as described above. For subsequent
frames the estimated position and shape of the lips in the
previous frame are used as the initial estimate for the
search algorithm.

3. VISUAL SPEECH FEATURE EXTRACTION

The parameters describing the shape of the lips are
extracted at each time frame and used as visual speech
feature vectors. The parameters are invariant to scale,
rotation, translation and illumination and can directly be
used by the recognition network. The translation and
rotation parameters are not used for recognition because
they are unlikely to provide speech information.

Much speech information is contained in the dynamics
of the lip movements rather than the actual shape.
Furthermore dynamics of lip movements might be less
sensitive to linguistic variability. We therefore performed
some recognition tests by including temporal differences
of each feature (delta shapes). Scale might contain
relevant speech information but absolute values are hard
to estimate and may vary from speaker to speaker. We
omitted absolute scale information but we performed
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Figure 1: Mean shape and the first three principal modes
of variation at ± 2 standard deviations.



some recognition tests by including scale differences
(delta scale).

4. VISUAL SPEECH MODELLING

Visual speech is modelled by representing each utterance
as a sequence of visual speech vectors. Their emission
probabilities are modelled by continuous Gaussian
distributions and temporal changes are modelled by
Hidden Markov Models. We used whole-word HMMs and
trained one HMM for each word class to be recognised.
The models are trained using the Baum-Welch re-
estimation algorithm. Recognition is performed using the
Viterbi algorithm, which estimates the likelihood for each
HMM of having generated the observed sequence and the
model with the highest likelihood is chosen as the
recognised word. This is a standard approach used in
acoustic speech recognition systems [12].

The shape features contain some information which
contributes to class discriminability and some information
which describes between- and within-speaker variability
(linguistic variability). If we have sufficient training data
we assume that the recognition network will learn which
features contribute to class discriminability and which do
not. Since the database we used was very small we
performed a variety of recognition tests by using only the
first few shape parameters, corresponding to the largest
variances, assuming that these parameter estimates are
more robust and contain most of the speech information.

5. EXPERIMENTS

Experiments were performed using the Tulips1 database
[3] which consists of grey level image sequences of the
first four digits. Each digit was spoken twice by 12
individuals (9 males, 3 females). The database reflects a
broad variety of speakers and illumination conditions.

Experiments for locating and tracking lips were
individually evaluated and are described in detail in [13].
Figure 2 shows examples of lip tracking results using the
double contour model. The examples demonstrate that the
profile model has learned how the profile at the inner lip
contour can change due to mouth opening and visibility of
teeth and tongue. The second row also shows that the
model is able to track lips which extend beyond image
boundaries.

We performed speaker independent recognition tests,
using different speakers for training and testing to see
how well the system generalises for new speakers.
Because of the small size of the database, recognition tests
were performed using the ‘jack-knife’ or ‘leave-one-out’
method, i.e. 11 subjects were used for training and the
12th subject for testing. The whole procedure was
repeated 12 times, each time leaving a different subject
out for testing. The results were averaged over all
speakers. A large variety of visual front ends and HMM
architectures was used to evaluate the method.

6. RESULTS

Word accuracies of 80.21 % were achieved using the
single contour model and 85.42 % using the double
contour model. These results demonstrate that lip
contours are a rich source of speech information. This is
contrary to Bregler and Omohundro [14], who found the
outer lip contour not distinctive enough to give reasonable
recognition performance.

Best results were achieved with HMMs of 5 or 6 states
and one diagonal covariance matrix. This suggests that
the training set, consisting of 22 training instances for
each class was not large enough to estimate the
parameters of HMMs with a full covariance matrix or
more than one diagonal mixture component.

Fig. 2: Examples of image sequences with lip tracking
results.

Coefficients Single
Contour Model

Double
Contour Model

sm 58.33 % 67.71 %
sm + dsm 68.75 % 79.17 %
sm + dsm + ds 80.21 % 85.42 %

Table 1: Word accuracy using one shape mode (sm) with
optional delta shape mode (dsm) and delta scale (ds).



Using only one shape parameter together with its delta
coefficient and delta scale gave the best recognition rate.
This might also indicate that the training set was not
large enough to model more than the first main shape
mode reliably. Table 1 shows results using one shape
mode with optional “delta shape” and “delta scale” for 6
state HMMs with one diagonal mixture component.
Figure 3 summarises results for different numbers of
shape modes included in the feature vector.

7. CONCLUSIONS

We have described a new approach for visual speech
recognition based on a data driven lip model and HMMs.
Experiments have demonstrated high recognition
performance using very low dimensional shape
information only.

The recognition task described is relatively simple
because it only consists of four word classes and only
deals with isolated words. Nevertheless, recognition tests
were speaker independent and have demonstrated high
recognition accuracy and generalisation ability of the
system. More extensive tests with more speakers and sub-
word classes are necessary to estimate the discrimination
ability of shape features for all phonemes.

Our results are not as good as the ones reported in [3]
with 89.58% correct and which was about equivalent to
the performance of untrained humans performing the
same task. One reason for this might be the absence of
additional intensity information particularly about the
visibility of teeth and tongue. In the future we plan to
extract this information from the profile weight vector
and incorporate it in the visual feature vector.

The ability to locate and track lips accurately opens
several other potential applications, as example model
based image coding, facial animation, facial expression
recognition and audio-visual person identification.
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Fig. 3: Recognition accuracy for different numbers of
shape modes using combinations of basic shape modes
(sm), delta shape modes (dsm) and delta scale (ds).


