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This paper compares eigen-decomposition, lin-
ear and non-linear Radial Basis Function net-
work based �lter prediction, and signal embed-
ding for the removal of additive white gaussian
noise from speech. The embedding based pre-
dictor achieves improved noise reduction in com-
parison with eigen-decomposition but does not
perform as well as a non-linear prediction. How-
ever, signal embedding o�ers a compromise be-
tween retaining the high frequency spectral in-
formation found in non-linear prediction while
achieving low frequency noise reduction compa-
rable to eigen-decomposition.

Speech can be considered as a nonstationary
time series with inherently non-linear dynam-
ics created by an underlying physical mecha-
nism. Consequently geometric invariance mea-
sures may o�er a method of estimating the un-
derlying speech processes as demonstrated in
Potts and Broomhead [8]. Deterministic mathe-
matical models with few degrees of freedom can
generate extremely complex behaviour, and if
speech is deterministic then it may be possi-
ble to construct accurate low-complexity speech
predictors and generators, as investigated in
Moakes and Beet [6]. Since the vocal tract dy-
namics change slowly over time compared with
the speech signal, the ability to code and recre-
ate speech using low dimensional attractors has
great potential for speech compression and data
reduction. It may also o�er a degree of noise ro-
bustness which is investigated in this paper.

Transmitted speech generally contains noise and
the performance of automatic speech recognis-
ers and speech vocoders based on linear predic-
tion co-e�cients drops drastically if tested with
noise contaminated speech due to the mismatch
of noise conditions in the reference and test pat-
terns. Our aim is to reduce the noise content of
transmitted speech, preserve or enhance intelli-
gibility, and introduce as little distortion as pos-

sible. This can be achieved by pre-processing to
remove non-speech signals and provide a bet-
ter set of speech parameters for synthesis and
recognition.

Digital signal processing based on subspace met-
hods, namely principal component analysis and
eigen-decomposition, o�er high resolution spec-
tral analysis (Slyh and Moses [9]), parameter es-
timation of noisy signals, and speech enhance-
ment (Dendrinos et al. [3]). Spectral subtrac-
tion techniques o�er similar results but require
signal analysis in the frequency domain and the
estimation of the background noise character-
istics (a supervised approach). Most time do-
main speech enhancement has concentrated on
linear prediction approaches, and Kalman �lter
based noise reduction techniques in particular
have proved bene�cial to a range of speaker ver-
i�cation methods.

To allow for, and even exploit, the non-linearity
and non-stationarity of the speech, and make
use of the dynamics of the underlying physical
mechanism of speech production, new methods
are required. Signal sub-space noise reduction
and non-linear embedding have been applied to
speech noise reduction in phonemes in [6] where
embedded speech dynamics are the input to a
neural network predictive speech �lter. Here we
extend this work to an on-line adaptive noise
reduction technique for use with longer speech
segments and compare our results with existing
eigen-decomposition techniques and both linear
and non-linear auto-regressive moving average
(ARMA) �lters. The non-linear approaches use
a novel on-line adaptive Radial Basis Function
network (RBFN) technique which has recently
shown excellent noise robustness for speech anal-
ysis and pitch detection in Moakes and Beet [7].
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One of many noise robust approaches for speech
prediction is the backward linear predictor [9]
where future samples are used to estimate the
auto-regressive (AR) �lter parameters. Using
the �lter on windows of a speech signal ,
samples wide, the prediction equations can be
written in matrix form as

...
...

...
...

= ...

(1)
or = where has Hankel structure and
is a column vector de�ning the �lter impulse

response.

Linear prediction methods are attractive for th-
eir computational simplicity, but have a poor
performance at low signal to ratios (SNRs), hen-
ce the noise must be separated from . can
be decomposed as

= (2)

using singular value decomposition (SVD), wh-
ere and are the left and right singular vectors
and are the singular values arranged in non-
increasing order. If is considered to comprise
a signal subspace of dimension : and
a noise subspace which are mutually orthog-
onal, the signal can be recreated using the �rst
components of the SVD with the greatest in-

formation content. The result is a lower rank,
minimum norm approximation of , ~ , with
a reduced noise content and signal space dimen-
sion [3] which can be written

~ = (3)

is dependent upon the spectral content of the
signal frame and the noise level and the ob-
jective is to select such that ~ is closest
to in a minimum norm sense giving a re-
constructed signal closest to the original signal.
Optimal selection of is a major problem in
which signi�cantly large, . . . , and insignif-
icantly small, . . . , singular values must
be distinguished. Konstantinides and Yao [5]

introduced an unsupervised matrix rank deter-
mination method using the statistical analysis
of the singular values which is adopted in this
paper.

~ often has a non-Hankel structure which can
be restored by averaging the multiple occur-
rences of each sample along the anti-diagonals,
regenerating the noise free estimate of the sig-
nal. This enhancement is strongly non-linear
but fully automatic with results comparable to
those of least mean square �lters and spectral
subtraction.

There are several problems with this approach
which we aim to overcome with a non-linear
technique. The signal has to be orthogonal to
the noise, the noise has to be white, and the
smallest eigenvalue of the signal must be greater
than the largest eigenvalue of the noise.

Speech can be considered to be generated from a
state vector and an iterative mapping, =
( ), governing the evolution on the state space
which determines the system dynamics [6].

Since speech is a dissipative system the dynam-
ics are con�ned to a sub-space of with fewer
degrees of freedom than which requires less in-
formation to describe its state (Broomhead and
King [1]).

To model the dynamics, an embedding space is
created using the method of delays to form the
matrix of equation (1) [8]. comprises data
vectors which are generated by passing an -
element sliding window over the speech to form
the vector as

= ( ) = ( . . . ) (4)

and the trajectory matrix is constructed as

= ( . . . ) (5)

can be decomposed into a trajectory matrix
in a subspace containing the embedded mani-
fold using SVD, where = � and the
embedding transformation is achieved by pro-
jecting the speech time series through the �rst
principal right eigenvectors, [8]. The em-

bedded signal is thus given by

= (6)
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The optimal value of can be found from the
signal correlation dimension or the use of Lya-
punov exponents. Here it is equivalent to the es-
timated optimal rank of ~ in eigen-decompos-
ition. Embedding speech in this way preserves
the non-linearity of the signal, which is ordinar-
ily lost during SVD smoothing and linear pre-
diction, since the original speech is only pro-
jected in the direction of the linear principal
components, not �ltered.

RBFNs (Broomhead and Lowe [2]) are two layer
networks comprising a hidden layer and an out-
put layer. The hidden layer contains nodes wh-
ich calculate the Euclidean distance between a
centre and an input vector . The result is
passed through a non-linear function to gener-
ate the node output, , which can be written

= �( ) (7)

where �( ) is a non-linear function. The thin-
plate spline function, �( ) = log( ), is cho-
sen here for its non-localised response which ac-
commodates the rapidly changing speech state-
space at the input vector.

Network approximation is dependent upon the
RBFN centre locations. The centres are ini-
tially selected randomly within the bounds of
the speech state-space and clustered to the train-
ing data using a variation of the Kohonen Self-
Organising Feature Map introduced by Hunts-
berger and Ajjimarangsee in [4]. This fuzzy
clustering approach avoids the sensitivity of -
means clustering to the initial centre positions,
preventing false minima being found.

The output layer comprises a linear combiner
which calculates the weighted sum of hidden
layer nodes, giving an output of

^ = (8)

where are the node weights and is the
number of hidden nodes. The response of the
RBFN is linear with respect to the node out-
put weights resulting in an output error surface
with only one global minimum. In this on-line
application, network training is achieved by pre-
senting input data and desired output values

to the network sequentially. Weight adapta-
tion is achieved using a Kalman �lter technique
with a forgetting factor [7] to minimise the mean
square prediction error.

An RBFN can approximate arbitrarily well any
continuous function on a compact domain if suf-
�cient basis functions are used. The changing
complexity of the speech dynamics implies that
the number of nodes required will vary depend-
ing upon the speech frame, so Kolmogorov's the-
orem is used to set the initial number of nodes
arbitrarily at 2 + 1, where is the dimen-
sion of the input vector . However, this �gure
assumes independence in the dimensions of the
input vector and the optimal number of nodes
is selected by experiment.

An AR predictive �lter comprises a weighted
sum of delayed speech samples. The weights
can be adapted using a Kalman �lter to min-
imise the mean square prediction error. A more
accurate model of speech incorporates the pitch
as a source signal, , in an ARMA model and
requires the estimation of at each sample.
Ting and Childers in [10] introduced an unsu-
pervised approach to estimate the source signal
from an error driven variable forgetting factor,
, in the Kalman �lter equation. When the

Kalman �lter is used to adapt RBFN weights
a similar approach to pitch detection is seen to
work with improved results [7].

The linear ARMA model output is a weighted
sum of the elements of an input vector com-
prising delayed speech samples and de-
layed estimate of the source ^ . The input vec-
tor is given by

= [ . . . ^ . . . ^ ] (9)

The non-linear ARMA model comprises an
RBFN, described above, with the input vector
. The weights of both �lters are adapted using

identical Kalman �lter equations to estimate the
current speech sample with minimum mean
square error, where ^ is calculated using with
variable forgetting factors .

The performance of the noise reduction approach-
es was tested using an utterance of the word
\�ve" sampled at 20kHz with white noise added
at various SNRs. The speech was assumed to
contain not more than 5 formant frequencies,
corresponding to a required minimum �lter or-
der of = 10. Thus the prediction matrix

was constructed using = 300 and =
30 to ensure over-modelling and matrix redun-
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dancy. This matrix was used for both eigen-
decomposition and embedding.

The ARMA �lters had an input vector of dimen-
sions = 10, corresponding to the minimum
�lter order, and = 3 to allow spectral com-
pensation for the voice source dynamics. Hence
an RBFN of size = 27 was initially selected
to satisfy Kolmogorov's theorem which was re-
duced to an optimal 18 nodes by experiment.
An error driven forgetting factor, , was used
to accommodate pitch e�ects and to estimate
.

For embedding, an order of = 6 was selected
based on the observation that the optimal order
of eigen-decomposition never exceeded = 6.
The embedded speech, , was used as the in-
put vector to an RBFN ARMA �lter to pre-
dict the speech sample . ^ was again es-
timated using . Initially the network had 19
nodes to satisfy Kolmogorov's theorem and was
reduced to an optimal 14 nodes by experiment.

The noise �ltered speech estimate is taken as the
�lter outputs and �gure 1 shows the

spectrograms of the �lter outputs and reference
signals, �gures 1a and 1b, at 0dB SNR. Eigen-
decomposition, �gure 1c, extracts the principal
signal frequencies along with some tonal noise
described in [3] and high frequency signal struc-
ture is lost. This approach to noise reduction
may be satisfactory for certain signals but the
high frequency structure is important in speech
characterisation. Dendrinos et al. [3] claim over-
all intelligibilty is not impaired below 10dB, how-
ever, in that case a supervised block order se-
lection technique was used and spectral content
was not discussed.

The spectral content of both ARMA �lters, �g-
ures 1d and 1e, is very similar with the lin-
ear �lter having slightly better high frequency
and non-speech noise reduction with a corre-
sponding loss of signal information. The em-
bedding approach, �gure 1f, presents an encour-
aging mixture of both the eigen-decomposition
and ARMA properties. It contains a spectral
content similar to the ARMA �lters with im-
proved non-speech noise reduction and better
de�ned high frequency structure.

A similar appraisal of the �lter error spectra
shows that the non-linear ARMA loses the least
signal information of all approaches and the er-
ror spectrum is generally white. The greatest

amount of information is lost using eigen-decom-
position, but surprisingly the linear ARMA mo-
del also loses a great deal of the signal struc-
ture. The embedding approach loses some low
frequency information, but at high frequencies
it models the speech better than the non-linear
ARMA model. An objective term for the qual-
ity of the reconstructed signal is the ratio of
the energy of the clean signal to the energy of
the reconstruction error signal given in dB [3]
which can be used to select the optimal order
for eigen-decomposition. Figure 2 shows the en-
hanced speech SNR gain attained by the above
methods at a range of signal SNRs.

Clearly the eigen-decomposition approach achie-
ves poor noise reduction. This is due mainly
to the failure to incorporate pitch into the sig-
nal model resulting in becoming unnecessarily
large at pitch pulses to compensate. The linear
and non-linear ARMA approaches present very
similar and superior results, with embedding
falling between ARMA and eigen-decomposition,
highlighting the compromising nature of this ap-
proach.

Embedding creates a rotation of the speech into
a more stable data space with fewer degrees of
freedom. This allows a reduction of the RBFN
size and complexity required to approximate the
data. It also allows the removal of noise from
the RBFN input vector, ensuring that the adap-
tation is consistent and preventing noise becom-
ing part of the speech model. The clustering of
RBFN centres contributes signi�cantly to the
success of this approach and the results of fuzzy
node clustering for the embedding RBFN are
shown in �gure 3 for speech with an SNR of
0dB.

Clearly the e�ects of noise on the embedding of
the speech in the �rst two principal dimensions
are minimal and the RBFN nodes are evenly dis-
tributed to adequately sample the whole state
space. In the fourth and �fth dimensions the
added noise leads to a deviation of the noisy
dynamics from the clean manifold. The RBFN
nodes are not as evenly distributed in these di-
mensions resulting in inadequate modelling wh-
ich has the e�ect of reducing the inuence of
noisy dimensions on the speech prediction.

This does not, however, exclude the modelling
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of higher order speech components as these can
be accommodated in the weight adaptation. It
allows a compromise such that no information
is lost outright as observed during the eigen-
decomposition approach. However, equal signif-
icance in modelling is not given to noisy signal
dimensions which a�ects the ARMA �ltering re-
sults.

Eigen-decomposition has the greatest potential
to produce more accurate signal estimates be-
cause it does not involve prediction, only in-
terpolation. However, optimal order selection
is hindered by the pitch dynamics which lead
to model instability as the system compensates.
Signal embedding o�ers a more robust approach
to reconstruction order selection, removing the
dependence upon accurate signal sub-space rank
estimation. The incorporation of pitch dynam-
ics into the embedding model improves this sta-
bility and allows improved spectral estimation
comparable to ARMA �lters with improved non-
speech noise reduction.

Since the underlying speech dynamics are not
known there are limits to the amount
of noise that can be eliminated by embedding.
All speech contains an element of noise whose
source can be external or a non-deterministic
component of speech. This implies that the em-
bedding approach can eliminate non-determin-
istic components of speech even from clean spee-
ch. This can reect badly in er-
ror based SNR assessment and spectrograms de-
spite the improvement in capturing the dynam-
ics, observed in the improved spectral content.

This work supports the theory that low-dimensi-
onal attractors can o�er a noise robust approach
to speech prediction. This dynamical approach
to speech processing is a viable alternative to
ARMA speech analysis methods and provides
a better quality estimated speech signal than
eigen-decomposition.
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