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ABSTRACT

We describe a speechreading (lipreading) system purely
based on visual features extracted from grey level image
sequences of the speaker’s lips. Active shape models are
used to track the lip contours while visual speech
information is extracted from the shape of the contours.
The distribution and temporal dependencies of the shape
features are modelled by continuous density Hidden
Markov Models. Experiments are reported for speaker
independent recognition tests of isolated digits. The
analysis of individual feature components suggests that
speech relevant information is embedded in a low
dimensional space and fairly robust to inter- and intra-
speaker variability.

1. INTRODUCTION

Despite rapid progress in automatic speech recognition
over the past decades, the performance levels of most
systems degrade significantly in the presence of noise.
Many potential application areas such as office, car,
aircraft and factory usually contain high levels of noise
which often hinders the use of speech recognition
systems. Much research ecffort has thercfore been
directed to systems for noisy environments [1 | and the
robustness of speech recognition systems has been
identified as one of the biggest obstacles to overcome in
future rescarch |2 |.

Most approaches for robust recognition make use of
the acoustic speech signal only and ignore the multi-
modal nature of human speech. Psychological studies
have shown that besides the acoustic signal, visual
information of the speaker’s face is often involved in
the recognition process [3]. In the presence of noise,
visual speech signals can provide information
complementary to the acoustic signal and thus improve
speech perception [4]. Even if the acoustic signal is
undistorted, visual information can lead to more
accurate speech perception [5]. In the absence of the
acoustic speech signal it has been shown, that
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individuals with hearing impairments achieved high
recognition rates using visual information only [6 ].

In order to reach their full performance potential,
speech recognition systems may have to use several
modalities such as those naturally used by humans.
Whereas acoustic feature extraction methods are well
established, it is not well known which visual features
carry important speech information and how to
represent them. We describe a speechreading system
where speech features are extracted from the lip shape
and modelled by Hidden Markov Models (HMMs). We
demonstrate that high recognition accuracy can be
achieved for speaker independent recognition tests using
visual information only.

2. FEATURE EXTRACTION

Speechreading approaches can be classified into three
categories: model/geometry based [7], image/pixel-
based [8] and optical flow based [9]. Image based
systems use the image intensities ¢ither directly or after
some pre-processing as speech features. In the model
based approach a model of the wvisible speech
articulators is defined which is normally described by
some geometric measures like height and width of the
outer or inner lip contour or by a parameterised contour
model. Optical flow based systems assume that speech
relevant information is contained in the optical flow
information of the mouth arca.

2.1 Shape Modelling

Most visual speech information is contained in the
shape of the inner and outer lip contour and to a minor
extent in the visibility of teecth and tongue [5]. We
follow a model based approach where a model of the
lips is represented by a deformable shape model. The
model is used to locate, track and parameterise lip
contours in image sequences. We use an active shape
model (ASM) [10 | to model the deformation of the lip
contours. These are deformable models which represent
a contour by a set of points. ASMs make no heuristic



Figure 1: Image sequence of the word two with lip tracking results.

assumptions about legal shape deformation. Instcad, a
priori knowledge about typical deformation is obtained
from a training set of labelled lips. The mean shape of
the training set is calculated and principal component
analysis (PCA) is performed to obtain the principal
modes of shape variation. Any shape x, where x
contains the co-ordinates of the model points, can then
be approximated with

X=X+Pb )

where X is the mean shape, P the matrix of the first few
column cigenvectors of the covariance matrix which
correspond to the largest cigenvalues and b a vector
containing the weights for cach cigenvector. The
weights thus describe the shape of the model and are
used as input features for the recognition system. This
method enables detailed shape description with a small
number of parameters. The parameters are linecarly
independent although non-linear dependencies might be
present between the modes.

2.2 Locating and Tracking Lips

Locating and tracking lips in image sequences is a
difficult object recognition problem due to the lack of
dominant image features representing the lip contours.
The contrast at the outer lip contour is often very small
and the contrast at the inner lip contour is highly
variable due to mouth opening and visibility of teeth
and tongue. The problem becomes more difficult if the
algorithm is used for several subjects or for different
lighting conditions such as those expected for potential
applications.

While most previous approaches have used gradients
for representing the lip contour, we try to avoid heuristic
assumptions and build a model which learns typical
intensity information from a training set [11]. We
sample one-dimensional intensity profiles perpendicular
to the contour at each model point and for each training
image. The profiles of all model points of a training
image arc concatenated to form a global profile vector
h. The principal modes of intensity variation captured in
the training set arc obtained by PCA. In analogy to
shape modelling, any intensity profile seen in the
training set can now be approximated by

h=h+P,b, @

where h is the mean profile vector, P, the matrix of the
first few eigenvectors of the profile covariance matrix
and b, a vector containing the weights for the
eigenvectors. This method assumes that the deviations
of profiles at different profile points are correlated with
each other. The motivation for this approach is to build
a model which describes the mean intensity profile of
the training set and its main modes of variation which
originate from different speakers, different lighting
conditions and different “mouth states”.

The intensity model is used for image search to
measure the fit between the model and the image. The
model is first placed at an initial position in the image,
then the optimal weight vector by is calculated to align
the mean profile as closcly as possible to the image
profile using the first few profile modes. To obtain the
cost, we calculate the mean square error between the
aligned model profile and the image profile. For
locating and tracking the lip contours in an image, the
Downhill Simplex Method [12] is used to find a
minimum cost. To restrict the model to only deform to
shapes similar to the ones in the training set, we
constrain each shape and profile weight to stay within
+/- 3 standard deviation.

3. VISUAL SPEECH MODELLING

We built two models of the lips, one representing the
outer lip contour (Model 1) and one representing the
inner and outer lip contour (Model 2). This allows us to
evaluate the information of each contour towards
recognition performance.

The parameters describing the shape of the lips are
extracted at cach time frame and used as visual speech
features. An advantage of these features compared to
image/pixel based methods is their invariance to
illumination, scale, rotation and translation. Much
speech information is contained in the dynamics of the
lip movements rather than the actual shape. Furthermore
dynamics of lip movements might be less sensitive to
linguistic variability. We therefore performed some
recognition tests by including temporal differences of
the shape features (delta features).

Similar to acoustic speech modelling, we model
visual speech by representing cach utterance as a
sequence of visual speech vectors. Their emission
probabilities are modelled by continuous Gaussian
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Table 1: Recognition performance of Model 1 for each
shape mode (sm) and delta shape mode (dsm).

Figure 2: First 3 shape modes (1, 6, 7) of Model 1 with
the highest recognition performance (not counting
scale).

distributions and temporal changes arec modelled by
Hidden Markov Models. We used whole-word HMMs
and trained one HMM for each word class to be
recognised. The models are trained using the Baum-
Welch re-estimation algorithm and recognition is
performed using the Viterbi algorithm.

The shape features contain some information which
contributes to class discriminability and some
information which describes inter- and intra-speaker
variability (linguistic variability). If we have sufficient
training data and if we perform discriminative training,
we assume that the recognition network will learn which
features contribute to class discriminability and which
do not. The database we used was however very small
and therefore unlikely to provide enough training
material. In order to analyse the contribution of each
shape mode to recognition performance, we performed a
set of tests where each shape mode was used separately
as feature for the recognition system.

4. EXPERIMENTS

We used the Tulips 1 database [13 | for our experiments
which consists of grey level image sequences of the first
four digits. Each digit was spoken twice by 12
individuals (9 male, 3 female). The database reflects a
broad variety of speakers and illumination conditions.
One major difficulty in speechreading is caused by
the large inter-speaker variability due to different lip
shapes and different lip movements during speech
production. To see how well the recognition system
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Table 2: Recognition performance of Model 2 for each
shape mode (sm) and delta shape mode (dsm).
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Figure 3: First 3 shape modes (1, 3, 8) of Model 2 with
the highest recognition performance (not counting
scale).

generalises for new speakers we performed all tests for
speaker independent isolated word recognition, using
different subjects for training and testing. Because of
the small size of the database, recognition tests were
performed using the ‘jack-knife’ or ‘leave-one-out’
method, i.¢. 11 subjects were used for training and the
12th subject for testing. The whole procedure was
repeated 12 times, each time leaving a different subject
out for testing and the results were averaged over all
speakers.

We used HMMs with 6 states and one Gaussian with
diagonal variance vector per state, which have
previously lead to high recognition performance using
this database |14 |. We performed separate tests for
Model 1 and Model 2. The feature vector was
constructed of cither all shape features or single shape
features or a combination of the first few features with
the highest recognition score. All experiments were
repeated with delta features added in the feature vector.

Table 1 shows recognition performance for Model 1
where cach shape mode and scale were used separately.
Most speech information seems to be contained in only
about 2 shape modes and scale for the given experiment.
The shape modes with the highest performance are
shown in Figure 2. The first mode mainly accounts for
the shape of the lower lip whereas the 6th and 7th mode
seem to account for shape deformation due to lip
protrusion.

Similar results were obtained for Model 2, where
about 3 shape modes and scale seem to contain most
speech information (Table 2). The 3 shape modes are



Cocfficients Single Contour Double Contour
Model Model

sm 61.46 % 64.6 %

sm + dsm 81.25% 771 %

Table 3: Recognition performance using all shape modes
(sm) and delta shape modes (dsm).

Coefficients Single Contour Double Contour
Model Model

sm 69.8 % 69.8 %

sm + dsm 83.3 % 82.3 %

Table 4. Recognition performance using the first four
shape mode (sm) with the highest individual performance
and corresponding delta shape modes (dsm).

displayed in Figure 3 and seem to describe mainly the
shape of the lower lip, the horizontal mouth opening
coupled with the lower lip shape and the deformation
caused by protrusion.

Recognition performance was higher using the 4 best
modes compared to using all shape modes (Table 3,
Table 4). Best overall results were obtained with Model
1 rather than Model 2. The slightly lower performance
of Model 2 might be due to the small training set,
causing inaccurate HMM parameter estimation.
Including temporal difference parameters in the feature
vector improved recognition results in almost all
experiments which confirms the importance of dynamic
lip information. Best recognition scores obtained for the
given configuration were 83.3 % for Model 1 and 82.3
% for Model 2.

S. CONCLUSIONS AND FUTURE WORK

An approach for visual speech recognition has been
described based on lip shape information and their
modelling with HMMs. Speaker independent word
recognition experiments have demonstrated high
recognition performance and analysis of individual
shape modes indicate that speech relevant information is
contained in only a few modes which are quite robust to
inter- and intra-speaker variability.

The main constraint on the experiments was posed
by the small size of the database. Although the four
word classes were relatively easy to confuse visually,
they represent only a small sub-set of all phoneme
classes. More experiments on a larger database are
desirable to gain more insight into the discrimination
ability of shape features for all phonemes.

We are currently working on the extraction of
additional speech information from the profile weight
vector which might provide information about
protrusion and visibility of teeth and tongue. The fact
that the extracted features are person dependent is
exploited in another experiment in progress, where we

evaluate the extracted features for their discrimination
ability for the purpose of person verification.
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