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ABSTRACT 1 EXPERIMENTAL PROCEDURE

Speech recognition systems generally use delta
and delta-delta (velocity and acceleration)
coefficients to characterise the dynamics apparent
in frame-based representations of speech. These
coefficients can be thought of as the errors of
simple predictors.

For all the speech recognition experiments
described in this paper, a phoneme recognition
task was selected to show up differences in
performance between the different analysis and
modelling methods. This was chosen in preference
to, for example, whole-word recognition because
even the best current recognisers make sufficient
errors on this type of task for comparative results
to be meaningful. The identification of sub-word
units also provides diagnostic information as to
the forms of discrimination which are provided by
each representation or recognition method.

This paper describes the use of error coefficients
derived from more advanced (and accurate) forms
of prediction and interpolation. Both overall
recognition accuracy and the detailed confusions
observed are compared with those of the
‘traditional’ methods. The task used is speaker-
independent phoneme recognition using a subset of
the TIMIT database, and four different speech
representations. The error coefficient performance
on this task appears to be directly related to the
robustness of the estimator used, with the best of
the new methods out-performing delta-delta
coefficients by around 10%.

The experiments are based on the phonetically-
labelled speech database, TIMIT [1]. The
recognition experiments were conducted using
Cambridge University's HTK Hidden Markov
Model Toolkit [2].

For the work here, a simple 3-state HMM, with no
parameter tying, was used for each phoneme. The
left-right structure of figure 1 was used. This is
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Figure 1: HMM used for each phoneme. Only those shown with white backgrounds
emit observations.



only one of many possible structures [3], but it
was chosen because it forces all instantiations of
the respective phoneme to occupy the centre state
at some point. This presumes that each phoneme
has one segment which has a characteristic PDF,
and which must be present for the phoneme to be
identified. This segment may be preceded or
followed by other less critical (and probably less
well-defined) segments, so the other states may be
skipped. Thus the essential segment which
characterises each phoneme can be learnt as being
at the beginning, middle or end of each phoneme,
as appropriate.

Finally, inter-phone-model transition probabilities
were incorporated based on the original labelling
of the TIMIT database' training set, subjected to a
minimum value to cope with transitions which
were under-represented in the training data.

2 VECTOR ESTIMATION

It is almost universal practice to augment the basic
observation vector sequence with delta coefficients
to improve recognition performance. A further
improvement can be obtained by appending
further dynamics information with delta-delta (or
acceleration) coefficients. These can be viewed as
a form of prediction error, but other forms of
predictor can chracterise speech dynamics more
accurately.

Each state was allocated 3 mixtures in its PDF, as
is commonly reported in the literature [4]. This
represents a compromise between computational
tractability and accuracy of modelling the true
distributions, which frequently deviate from a
simple Gaussian. Delta coefficients were also used
in all experiments, being treated as a separate data
stream of observations.

The errors of such models can be appended to the
obeservation vectors in place of delta-delta
coefficients. The estimators used here are
described briefly below, but further details are to
be found in [5].Because the available training data was somewhat

restricted (due to the deliberate avoidance of
dialect and gender-related variability, mentioned
previously), the number of variables which must
be learned by the HMM has been minimised
wherever possible. In particular, a state-dependent
diagonal covariance matrix has been used. In this
case, the number of variables to be estimated is
proportional to the dimensionality of the speech
representation. Since the number of values present
in that representation is also proportional to its
dimensionality, there is no need to increase the size
of the training data set even if a representation of
higher dimensionality is used.

2.1 First-Order Predictor

A first-order predictor, which assumes the change
between successive data vectors is constant, yields
an error equal to the delta-delta coefficients. This
method requires over-sampling to model the
sequence accurately.

2.2 Flow-Based Predictor

This method (FBP) allows for migration of
features between appropriate elements within the
data vectors. Two consecutive vectors are used to
predict the direction of migration (the flow) and
the change in value of the respective elements. The
resulting prediction is accurate during voiced
sounds, but is susceptible to relatively large errors
during abrupt onsets.

If a full covariance matrix had been used, the
number of values to be estimated would have
increased with the square of the dimensionality of
the speech representation. Thus the size of the
training data set would need to increase linearly
with that dimensionality. In practice, the size of
the training data set is fixed, so high-dimensional
representations would be at a disadvantage with
respect to those with lower dimensionality.

2.3 Adaptive Flux interpolation

The fundamental aim of the Adaptive Flux
Interpolation (AFI) method is to estimate data
vector, n, from a sequence, given only the two



adjacent vectors, n-1 and n+1. It is assumed that
the data vectors contain related elements, which
have similar values, and lie on non-crossing lines
of flux. The direction of these lines of flux change
with time. The AFI algorithm adapts to track these
changes, and interpolates along the lines of flux.
This method is at least as accurate as FBP, but is
also more robust.

FBP in terms of mean square estimation error [5],
it gives a better recognition result.

This may be because the statistical model at the
heart of an HMM estimates the probability of an
observation sequence using recursive application
of the equation:
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3 RESULTS

where p is the probability operator, N is the most
recent time index, M is the model and o1, o2, ...,
oN is the sequence of observation vectors.

The results are shown in figure 2, where the
improvement in recognition accuracy is shown for
each of three auditory spectrum representations,
together with the commonly used auditory
cepstrum coefficients.

When incorporating the estimation error statistics
in this formalism, the probability of the
observation sequence up to time N cannot be a
function of future observations. Thus,
interpolative approaches (such as AFI) will
interfere with the assumed independence between
oN and its predecessors.

The improvement due to FBP and AFI is between
4% and 10%, depending on the representation. In
general, FBP performed better than AFI (by about
1%), except in the case of the Blackman-Tukey
power spectrum, where AFI was clearly superior.

This effect is not apparent with the auditory
Blackman-Tukey method since this was
implemented with a longer time-domain window
(to ensure comparable temporal continuity in its
output data [6]). This increases the correlation
between successive observation vectors and makes

4 CONCLUSIONS

The more complete removal of redundancy from
the speech representations improves recognition
accuracy. However, although AFI outperforms
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Figure 2: Relative increase in recognition accuracy.



the non-causality of the model less apparent. In
this case, AFI's increased robustness outweighs
FBP's causality.
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