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ABSTRACT

1 EXPERIMENTAL PROCEDURE

Speech recognition systems generally use deltd=or all the speech recognition experiments
and delta-delta (velocity and acceleration) described in thispaper, aphoneme recognition

coefficients to characterise the dynamagparent

task was selected to show up differences in

in frame-based representations of speech. Thesperformance between the differeahalysis and

coefficients can be thought of as tkerors of
simple predictors.

This paper describehe use oferror coefficients
derived from more advanced (aadcurateforms
of prediction and interpolation. Both overall
recognitionaccuracy andhe detailed confusions
observed are compared with those of the
‘traditional’ methods. Thdask used is speaker-
independent phoneme recognition usirgyibset of
the TIMIT database,and four different speech
representations. The errooefficient performance
on this task appears to loirectly related to the

modelling methodsThis waschosen in preference
to, for example, whole-word recognition because
eventhe best current recognisarsake sufficient
errors on this type absk for comparative results
to be meaningful. The identification of sub-word
units also provides diagnostic information as to
the forms of discrimination whichre provided by
each representation or recognition method.

The experimentsaare based orthe phonetically-
labelled speech databasel[IMIT [1]. The
recognition experiments were conducted using
Cambridge University'sHTK Hidden Markov

robustness of the estimator used, with the best oModel Toolkit [2].

the new methods out-performing delta-delta
coefficients by around 10%.

For the work here, a simple 3-stat®M, with no
parameter tying, was used for egdfoneme. The
left-right structure of figure 1 was used. This is

Right State

Figure 1: HMM used for each phoneme. Only those shown with white backgrounds
emit observations.



only one of manypossible structuref3], but it
was chosen because it forcell instantiations of
the respectivgphoneme taccupy the centre state
at somepoint. This presumethat eachphoneme
hasone segment whichas a characteristieDF,
and whichmust be present fahe phoneme to be
identified. This segment may be preceded or
followed by otheress critical (and probabliess
well-defined) segments, so the otlséatesmay be
skipped. Thus the essential segmentvhich
characterises eagihonemecan be learnt alseing
at the beginningniddle or end ofachphoneme,
as appropriate.

Each state was allocated 3 mixtures irPiRF, as

is commonlyreported in the literatur@]. This
represents a compromidgmtween computational
tractability and accuracy ofmodelling thetrue
distributions, which frequently deviate from a
simple Gaussian. Delta coefficienterealsoused

in all experimentsheingtreated as a separate data
stream of observations.

Because the available trainidgta wassomewhat

restricted (due to the deliberate avoidance of

dialect and gender-related variabilitgnentioned
previously), the number of variableghich must
be learned by thedAMM has been minimised
wherever possible. Iparticular, a statdependent
diagonal covariance matrixasbeenused. In this

case,the number of variables to be estimated is

proportional to the dimensionality of thepeech

Finally, inter-phone-modeiansition probabilities
were incorporatedased on the origindabelling
of the TIMIT databasetraining set, subjected to a
minimum value to cope with transitiong/hich
were under-represented in the training data.

2 VECTOR ESTIMATION

It is almost universal practice to augment the basic
observation vector sequence with delta coefficients
to improve recognition performance. Airther
improvement can be obtained byappending
further dynamics information with delta-delta (or
acceleration) coefficients. These canvimved as

a form of predictionerror, butother forms of
predictor can chracterise speech dynanmuse
accurately.

The errors of sucimodelscan be appended to the
obeservation vectors in place of delta-delta
coefficients. The estimators used here are
described briefly belowbut furtherdetails are to
be found in [5].

2.1 First-Order Predictor

A first-order predictorwhich assumes thehange
between successidatavectors is constanyjelds
an error equal tthe delta-delta coefficients. This
method requires over-sampling tanodel the
sequence accurately.

representation. Since the number of values presen$ 5 Flow-Based Predictor

in that representation is also proportional to its

dimensionality, there is no need to increase the sizd his method (FBP) allows for migration of

of the trainingdata sekven if arepresentation of
higher dimensionality is used.

If a full covariance matrix hadeen used, the
number of values to be estimated wouldve

increased with the square of tienensionality of
the speech representatiofhus the size of the
training data setwould need toincrease linearly
with that dimensionality. Inpractice,the size of
the trainingdata set idixed, so high-dimensional
representations would be at a disadvantaile

respect to those with lower dimensionality.

featuresbetweenappropriateelements within the
data vectorsTwo consecutive vectoeused to
predict the direction of migration (the flow) and
the change in value of the respective elements. The
resulting prediction isaccurate during voiced
soundsput issusceptible to relatively large errors
during abrupt onsets.

2.3 Adaptive Flux interpolation

The fundamental aim of the Adaptive Flux
Interpolation (AFI) method is to estimatelata
vector, n, from a sequencgiven only the two



adjacent vectors}-1 andn+1. It isassumed that FBP interms of meaisquare estimatioarror [5],
the data vectors contain related elementghich it gives a better recognition result.

have similar values, anlge on non-crossing lines
of flux. Thedirection of these lines dfux change
with time. The AFI algorithm adapts to trattiese
changes, and interpolates along the linedlw.
This method is ateast as accurate as FBP, but is
also more robust.

This may be because tlsgatisticalmodel at the
heart of an HMMestimates the probability of an
observation sequence using recursive application
of the equation:

p(01,05,...,0y |M)
=p(01,02,...]0N )% p(oN M)

3 RESULTS
o where p is thgorobability operatorN is the most
The results areshown in figure 2, where the  o.ont time indexM is themodelandoy, 0y, ...,

improvement in recpgnltloaccuracy isshown for_ oy is the sequence of observation vectors.
each of three auditory spectrum representations,

together with the commonly used auditory Whenincorporating the estimatioarror statistics
cepstrum coefficients. in this formalism, the probability of the

observation sequence up to tiMkecannot be a
function of future observations. Thus,
interpolative approaches (such as ARNill
interfere with the assumeddependence between
oN and its predecessors.

The improvement due 6BP and AFI isbetween
4% and10%, depending on theepresentation. In
general FBP performed better than AFI (labout
1%), except in the case of the Blackman-Tukey

power spectrum, where AFI was clearly superior.
This effect is notapparentwith the auditory

Blackman-Tukey method sincethis was
4 CONCLUSIONS implemented with a longer time-domaivindow
(to ensure comparable temporal continuity in its
output data [6]). Thisincreases the correlation
rbetween successive observat@ttors andnakes

The more complete removal of redundaricym
the speech representations improves recognitio
accuracy. However, although AFI outperforms
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Figure 2: Relative increase in recognition accuracy.



the non-causality of thenodel less apparent. In
this case, AFI's increased robustnesgweighs
FBP's causality.
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