
 ABSTRACT

An algorithm is presented which allows non-
parametric representations of speech to be
automatically segmented into units of comparable
duration and character to manually-defined
phonemes. The consistency of this segmentation
across speakers, and across telephone channels, is
investigated and the implications of adopting such
forms of data for automatic speech recognition are
discussed.

1.  INTRODUCTION

Throughout the history of speech recognition, there
has been a long-standing argument between
advocates of the rule-based expert system
approach, based on expert phonetic knowledge, and
those who would state that ‘data is all’, relying on
blind statistics to provide discrimination between
sounds. For many years now, the ‘data-driven’
approach has proved demonstrably superior, but it
is the authors’ contention that the knowledge
gleaned by generations of phoneticians is itself
‘data-driven’ and capable of yielding significant
insights into the shortcomings of current speech
recognition systems.

The symbolic representation of speech devised by
phoneticians has been defined by a combination of
acoustic and visual perception. The speech units
they have devised have been based on patterns
observed in real acoustic waveforms and
spectrograms. As such they include many patterns
which are non-stationary. These periods of
changing acoustic characteristics are an inherent
part of natural speech, but are not well accounted
for in the so-called ‘data-driven’ formalisms such
as hidden Markov models (HMMs). To improve on
these techniques, it is necessary to move away from
the concept of a finite-state machine (FSM)
towards a system which allows for both continuous
and abrupt changes.

2.  DYNAMIC SPEECH UNITS

One phonetic concept which could contribute to the
demise of the FSM approach to speech recognition,
is that of articulatory targets. By considering each
segment of the speech signal as a transition
between two targets, many of the effects of
coarticulation become irrelevant. The only problem
which remains is the identification of the instants at
which each new target comes into view.

Multi-step Adaptive Flux Interpolation (MAFI) [1]
provides an algorithm for describing extended
segments of the speech signal in terms of an initial
parameter vector, a target and a duration. Thus
recognition based on these parameters could avoid
many of the problems of current systems, provided
the values they take are consistent whilst
simultaneously including sufficient discriminatory
information. The blocks defined during the MAFI
analysis are, however, purely data-driven and the
units of speech which they describe are not
constrained to be directly related to specific
phonemes. Thus they succeed in reducing the
overall dimensionality of the recognition task, but
stop short of implementing hard quantisation.

 2. 1.  Multi-step Adaptive Flux Interpolation

MAFI was developed from the interpolation
technique, Adaptive Flux Interpolation (AFI) [2], to
model the temporal changes in power spectra of
speech and remove redundancy by omitting those
frames which can be accurately reconstructed by
interpolation between the retained frames. It is
essentially a variable frame-rate (VFR) system [3],
but the reconstruction of the missing frames is
performed using an interpolation which allows for
the migration of features from one element of a
vector to another within each encoded block. Thus
much longer blocks can be encoded than would be
possible with a more conventional VFR system.
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MAFI seeks to make a flux linkage between every
observation vector from N1 to N2 explicit, given

only the data in the two terminal vectors (Figure 1).
The likelihood of each pair of elements being
linked, can be assumed to be given by a zero-mean
Gaussian distribution of the change in data value
from one end of the link to the other. The most
likely set of non-crossing links are then found by a
simple form of dynamic programming.

Consider the link from element i of frame N-1 to
element j of frame N, as shown here (Figure 1). To
find the links between frame N-1 and frame N, we
require a local distance matrix, Γ , containing the
likelihood of every potential link. The elements of
Γ  can be expressed in a normalised log-likelihood
form:
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where RN u1 ,  is the value in element u of the

known frame N1 at the point of incidence of the

link, linearly extrapolated to reach that frame.
RN v2 ,  corresponds to the other (extrapolated) end

of the link, where it intercepts frame N2.
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Figure 1: Relationship between linked elements of
observation vectors N and N-1, extended to reach

terminal vectors, N1 and N2.

Dynamic programming is then used to find the set
of links which give the minimum total log
likelihood over all selected links. Various
constraints can be imposed during the dynamic
programming. In particular, links which would be

extrapolated to pass beyond the ends of any frames,
are disallowed, as are links which correspond to
unrealistically rapid frequency transitions.

To segment the data, N1 is initialised to index the

first vector and N2 is set to N1+2. N2 is then

repeatedly incremented until the discrepancy
between the true vector sequence, and the values
found by linear interpolation along the links
described above, exceeds some threshold. Once this
occurs, the segment is taken to extend from N1 to

N2-1, N1 is set to the end of that segment, and the

whole process repeated.

 2. 2.  Utilisation

Being able to divide a speech utterance into
segments is one thing; gaining any advantage from
that process is quite another. For the segments to be
useful in speech recognition, their statistical
behaviour must be considered. Ideally, the
parameters describing the segments should be
consistent from one utterance of a word to another.
Obviously, this issue is counterbalanced by the
need for at least some of the segments to be clearly
distinct when different words are used.

The segments identified by MAFI are characterised
solely by their duration and their terminal
observation vectors. These vectors can take the
form of mel-frequency cepstral coefficients
(MFCCs), power spectral densities (PSDs), or even
auditory representations. Thus the issues of
variability are essentially the same as those in most
current speech recognition systems. However, for
any recognition system to make full use of such a
representation, account must be taken of the
variation due to the absence of individual
boundaries in some cases, and the presence of
extraneous ones on other occasions.

3.  EXPERIMENTS & RESULTS

This paper uses data collected with a range of
channel characteristics (the NTIMIT database [4])
to demonstrate the consistency of MAFI parameters
for analysis and representation of  speech for
recognition. The natural boundaries of the acoustic
units identified by MAFI have been compared with
the conventional phonetic labels provided with the
database. The phonetic segmentation of the
example data presented here, is shown in Figure 2.



 (a) ....................

(b) ......

(c) .........

(d) ...........

(e) ......

(f)

Figure 2: Phonetic segmentation of six sample utterances of the same sentence by different speakers:
(a) - (c) female, (d) - (f) male
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Figure 3: Data-derived segment boundaries for the same utterances shown in Figure 2.



The results of the MAFI segmentation are
impractical to fully describe with simple statistics,
so some graphical examples, both of data which
shows consistent segmentation, and of data with
spurious and missing segment boundaries, are
shown in Figure 3.

Manual alignment of the various utterances in
Figure 3 has identified the cumulative distribution
of segment boundaries common to different
numbers of utterances of the same sentence (Figure
4).
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Figure 4: Numbers of data-derived segment
boundaries in common between multiple utterances

of the same sentence

Figure 4 shows that although over 95% of the
detected segment boundaries are common to more
than one utterance, it is only possible to rely on
60% of the boundaries (at most) being present in
every case. Thus it is essential that any recogniser
using this form of data should base its decisions on
those boundaries which are common to virtually all
instances of the respective words. The recogniser
must be able to cope with a large proportion of
extraneous boundaries, presumably treating them as
‘noise’.

However, it is worth noting that many of the
extraneous boundaries actually have a very similar
form to their immediate neighbours, so even a
recogniser based on conventional HMMs would be
able to handle this problem quite well (repeated
similar segment boundaries would simply result in
extended occupancy of the respective HMM state).

4. CONCLUSIONS

An appropriate choice of MAFI parameters (error
threshold and maximum rate of change of position
within the vector) can yield segment boundaries
which have been found to be similar to the
manually labelled phoneme boundaries. However,
the targets yielded by automatic segmentation do
not always have a one-to-one mapping to
conventional phonetic labels. Recognition
algorithms which can allow for this feature of the
data representation are currently under
development.
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