
ABSTRACT

Four models of speech dynamics are compared
for robustness and accuracy: Adaptive Flux
Interpolation, Flow-Based Prediction, Delta
and Delta-Delta Coefficients. These models are
applied to a number of speech representations.
The interpolative approach is shown to be
superior to prediction in all cases.

1. INTRODUCTION

Speech is a nonstationary signal that is glibly
treated as piecewise stationary in most systems.
Although there are methods that aim to model
speech dynamics, the most powerful of these
are either computationally intense or require
prohibitive quantities of training data [1, 2].
Conventional methods which avoid these
problems include zero-order and first-order
predictors, which yield the oft-used delta and
delta-delta coefficients of automatic speech
recognition systems.

A realistic model of speech evolution has
recently been developed (Flow-Based
Prediction, or FBP [3]), allowing accurate
prediction of spectrogram data. This paper
describes a method for interpolation between
pairs of data vectors. Although both FBP and
the Adaptive Flux Interpolation (AFI)
technique, are based on the same assumptions
regarding signal evolution, the addition of end-
point constraints makes the interpolation
approach more robust.

To conclude, AFI, FBP, delta and delta-delta
coefficients are compared and the superiority of
AFI is demonstrated.

2. BACKGROUND

Speech sounds are made up of periods of
gradual spectral change (mostly voiced speech
and fricatives), interspersed with other periods
characterised by abrupt onsets or offsets
(plosives, stops, etc.). Spectrograms and similar
frame-based representations of speech,
therefore have a piecewise-continuous form,
but are rarely piecewise-constant.

There are several tractable methods for
characterising the short-term dynamic
behaviour of spectrograms and other related
speech representations. The most important of
these are listed below:

2.1. Zero-Order Predictor:

A zero-order predictor simply assumes that one
data vector can be estimated to be the same as
its predecessor. The error in the prediction is
then the difference between successive vectors
(i.e. the delta coefficients). This method relies
on temporal over-sampling to ensure that
changes between one vector and the next are
not too abrupt.

2.2. First-Order Predictor:

A first-order predictor, which assumes the
change between successive data vectors is
constant, yields an error equal to the delta-delta
coefficients. This method also requires over-
sampling to operate correctly.

ADAPTIVE FLUX INTERPOLATION, FLOW-BASED PREDICTION,
DELTA OR DELTA-DELTA COEFFICIENTS: WHICH IS BEST?

Ladan Baghai-Ravary‡, Steve Beet† and Osman Tokhi‡

‡ Department of Automatic Control and Systems Engineering,
† Department of Electronic and Electrical Engineering,

Sheffield University, Mappin Street, Sheffield, S1 3JD, UK.



2.3. Flow-Based Predictor:

This method, described in [3], allows for
migration of features between appropriate
elements within the data vectors. Two
consecutive vectors are used to predict the
direction of migration (the flow) and the
change in value of the respective elements.

3. ADAPTIVE FLUX
INTERPOLATION

The fundamental aim of the Adaptive Flux
Interpolation method described here, is to
estimate data vector, n, from a sequence, given
only the two adjacent vectors, n-1 and n+1. It is
assumed that the data vectors contain related
elements, which have similar values, and lie on
non-crossing lines of flux. The direction of
these lines of flux change with time. The AFI
algorithm adapts to track these changes, and
interpolates along the lines of flux.

The likelihood of each pair of elements
lying on the same line of flux, can be assumed
to be given by a zero-mean Gaussian
distribution of the change in data value from
one end of the line to the other. The most likely
set of non-crossing lines can be found by a
simple form of dynamic programming.

Figure 1: Link between consecutive frames
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Consider the link from element i of vector n-1
to element j of vector n. To find the link, we

require a local distance matrix, Γ , containing
the likelihood of every potential link. The
elements of Γ  can be expressed in a normalised
log-likelihood form:

γ i j n u n vR R, = −+ −1 1

2

, ,

where Rn u+1,  is the value in element u of vector

n+1, at the point of incidence of the link. Rn v−1,

corresponds to the other (extrapolated) end of
the link, where it intercepts vector n-1.

Dynamic programming is then used to find
the set of links which give the maximum total
log likelihood over all selected links. Various
constraints can be imposed during the dynamic
programming. In particular, links which would
pass beyond the ends of any frames, are disal-
lowed, as are links which correspond to
unrealistically rapid transitions.

4. EXPERIMENTS

Figures 2 and 3 show the average normalised
errors for typical speech representations of
male and female speakers, when performing
single-frame prediction and interpolation. The
legends for these figures are explained in Table
1.

Most of the representations were produced by
standard processing algorithms: the power
spectrum was calculated by the Blackman-
Tukey method [4], the ERB-scale cepstrum is a
frequency-warped version of the standard
cepstrum, based on the "Equivalent
Rectangular Bandwidth" auditory frequency
scale [5], the LP (Linear Prediction) spectrum
is calculated by the Maximum Entropy Method
(MEM) [4], and both the latter and the log
vocal tract area functions were calculated from
the reflection coefficients yielded by Burg’s
method [4].

5. CONCLUSIONS

The zero-order predictor, which yields the delta
coefficients, is not particularly accurate but
because it is robust, it rarely makes severe
errors and the overall error score is not bad. By
comparison, the first-order predictor (yielding



delta-delta coefficients) and FBP are more
accurate during smoothly evolving regions, but
are less robust. They overshoot following
abrupt onsets or offsets, and their average error
scores are therefore worse. Of these two, FBP
is slightly better on average due to its ability to
track migrating features, giving it a lower error
score on most data types.

The performances of all these methods are
virtually identical for different genders. This
demonstrates that the normalisation applied
during error score calculation has correctly
compensated for differences in overall speech
characteristics.

For all these speech representations, AFI gave a
significantly more accurate estimate than any of
the other methods. It is better at modelling
speech dynamics and is the most robust of the
methods presented here. Hence it has the
lowest error score.
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Figure 2: Comparative error scores for male speaker
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Figure 3: Comparative error scores for female speaker
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Table 1: Key to legends in figures 2 and 3

LPC

VTA

REF

PGM

A-PGM

BT

A-BT

LP coefficients

Vocal tract areas

Reflection coefficients

Periodogram

ERB-scale PGM

Blackman-Tukey PSD

ERB-scale BT

MEM

A-MEM

MLM

A-MLM

CEP

A-CEP

LP (MEM) spectrum

ERB-scale MEM

Maximum Likelihood PSD

ERB-scale MLM

Cepstrum

ERB-scale CEP


