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ABSTRACT

This paper compares a number of different auditory
power spectral density representations of speech signals
in a phoneme recognition task. The numerical properties
of the various representations are quite different even
though they are calculated from the same intermediate
representation. The results presented here clearly indicate
that the degree of variability in results is large, even
when it is ostensibly the same parameter which is being
estimated. Thus, it is not merely ‘what’ is calculated, but
‘how’ its value is estimated, which ultimately may
determine recognition performance.

Two similar but different sets of comparisons have been
made to confirm that a significant difference does indeed
exist. In both cases, the maximum entropy method of
power spectrum estimation is significantly better than the
others, even though both this and the maximum
likelihood method are based on the same initial linear
prediction analysis of the signal. The maximum
likelihood method's performance is very nearly the same
as that of the Blackman-Tukey method.

1. INTRODUCTION

Mainstream speech recognition systems, such as those
based on hidden Markov models (HMMs) [1] and
artificial neural networks (ANNs) [2], are unable to use
full-scale auditory models due to a combination of
inappropriate data characteristics, excessive volumes of
output data, and high computational cost. Consequently,
the closest they get is to make use of a pseudo-auditory
frequency scale in mel-frequency cepstral coefficient
(MFCC) or perceptual linear prediction (PLP) analysis
methods [3]. However, many other computationally-
efficient and HMM/ANN-compatible representations are
made possible by modifying standard signal analysis
methods.

The most computationally-efficient models of the
peripheral auditory system are based on power-spectrum
models of perceptual phenomena ranging from basilar
membrane tuning curve variation to masking and
dynamic range compression. While imperfect in many

respects, such models are simple to implement and
largely predictable in their behaviour.

The most powerful methods for analysing temporal
sequences are based on estimates of the signal's
autocorrelation function (ACF). This can be thought of
as the inverse Fourier transform of the power spectral
density (PSD). Thus any of these methods could be
implemented in an auditory form by applying an
appropriate transformation in the frequency (Fourier)
domain before estimating the ACF from this modified
PSD estimate. Nonetheless, this is not always the best
approach. For example, speech is known to be well-
suited to analysis in terms of autoregressive (AR) model
parameters, and if the ACF is distorted prior to such
analysis, the validity of the AR model becomes suspect.
It is therefore often more appropriate to apply the
auditory transformation at a later stage in the processing.

2. PSD ESTIMATES

There are many well-established methods for estimating
the PSD of a signal [4]. Some of these are particularly
well-suited to the analysis of speech signals. Others are
not, and will not be discussed any further here. The three
approaches investigated for this paper are briefly
described below:

2.1. The Blackman-Tukey Method

One method for controlling the resolution of a
periodogram, and hence suppressing pitch in both time
and frequency domains, is to window the autocorrelation
function before taking its inverse Fourier transform. This
allows the frequency resolution to be reduced without
reducing the frame length, and it also produces an
unbiased PSD estimate. However, the window must have
a non-negative Fourier transform for negative PSD
estimates to be avoided. In the work reported here, the
window was made equal to the autocorrelation function
of a suitable prototype window, simultaneously ensuring
that the created window has finite duration and non-
negative Fourier transform at all frequencies.



2.2. The Maximum Likelihood Method

This is variously referred to as the minimum variance
PSD estimate, the maximum likelihood method (MLM)
or Capon’s method. It is equivalent to the design of an
FIR filter for each frequency where an estimate of the
PSD is required, although it can be implemented more
simply and efficiently using the method in [5]. This uses
a standard linear prediction analysis, and after some
simple modification of the coefficients, yields a complete
PSD estimate via the discrete Fourier transform.

Each MLM filter has unity gain at the design frequency,
but with minimal output power. In effect, the technique
attempts to attenuate all but the frequency component of
interest, and can be considered as a data-adaptive
periodogram.

The order of the filters determines the maximum number
of discrete frequency regions which can be attenuated,
and is chosen according to the application. To resolve
formant structure while suppressing pitch information,
the filter order should be chosen to be slightly more than
twice the maximum number of formants, as in linear
prediction analysis. An order of 16 was used for the
experiments described here.

Since the number of frequencies which can be
completely attenuated by the FIR filters is limited, this
method actually provides an upper bound on the true
PSD. This property may be useful in some applications,
but is not exploited here.

2.3. The Maximum Entropy Method

The power spectrum of an autoregressive (AR) process
can be obtained by calculating the parameters of the AR
model from the autocorrelation function of the signal.
The maximum entropy method (MEM) PSD estimate is
then obtained by multiplying the innovation power by the
power transfer function of the implied recursive filter.

The same linear prediction analysis is used in finding the
AR model’s transfer function as was used for the MLM.
In both cases, the auditory transformation was actually
applied to the final PSD estimate, rather than being used
to modify the ACF, as mentioned previously.

2.4. Auditory Transformation

The auditory transformation applied here consisted of a
form of dynamic range compression and a non-linear
scaling and smoothing of the power spectrum, in
accordance with observed psychophysical phenomena.

2.4.1. Amplitude Scale

Power spectrum estimates are normally encoded on a
logarithmic power scale. Auditory models, on the other
hand, generally use an Nth root operator. The correct
value of N is still a matter for debate, and is known to be
frequency-dependent [6].

While ‘physiological’ or ‘psychophysical correctness’
would suggest that that frequency-dependence should be
replicated here, there are sound mathematical reasons for
quantising N to the nearest odd integer. In practice, this
means that N will be independent of frequency.

The use of odd integer values for N is convenient
because it is then possible to take the required root of any
value, even if rounding errors in the PSD estimation
algorithm have generated a negative result. In the data
presented here, a value of N = 5 has been used, which is
within 3dB of a normalised logarithmic scale over a
dynamic range of 200:1, so any linear scaling of the input
signal can be approximated as the addition of an offset to
the values in the transformed power spectrum. This is an
important (and desirable) feature in automatic speech
recognition (ASR) systems since it gives a degree of
immunity to changes in signal level.

2.4.2. Frequency Scale

The warping function used here was chosen to be the
equivalent rectangular bandwidth (ERB) scale of Moore
and Glasberg [7]. This was developed specifically to
characterise frequency resolution in a power spectrum
model of human perception, and as in the case of
amplitude scaling, the use of this near-logarithmic scale
provides a useful immunity to moderate scaling of
formant frequencies due to variations in effective vocal
tract length.

The auditory representations considered here have
therefore been calculated on a warped frequency scale,
and have been smoothed to exhibit an appropriate
frequency resolution. This was done by forming a
weighted sum of the PSD estimate for each of a set of
equally spaced points on the constant ERB-rate scale.
The weighting is triangular, with unit height and width of
one ERB.

This form of weighting is like that traditionally used for
mel-scale processing, and was used in preference to the
one suggested by Moore and Glasberg purely for the
sake of simplicity: the exact form of the weighting they
suggest changes depending on the signal level and
involves more complicated (and thus, time-consuming)
calculations.



3. RECOGNITION EXPERIMENTS

The task selected for the recognition experiments was
that of speaker-independent phoneme recognition, using
the TIMIT database [8]. There were 60 phonetic
categories in the recogniser’s vocabulary, and a simple 3-
state hidden Markov model was used for each phoneme,
as shown in figure 1. Two sets of experiments were
conducted, one with the raw data augmented with delta
coefficients, the other including delta-delta coefficients
as well. A baseline was set by performing the same
experiments with a standard (DFT-based) MFCC
analysis. The reduction in error rate (expressed as a
percentage of the MFCC error rate) is shown in figures 2
and 3 for the experiments without and with delta-delta
coefficients, respectively.

In both cases, the auditory power spectrum estimates out-
performed the MFCC analysis. In the case of the MEM
PSD, this improvement was quite marked. The variation
between the results with and without delta-delta
coefficients was (on average) 5%, and this gives some
indication of the likely variability in the results due to
factors unrelated to the issues of interest here.

Following on from these reults, it was decided to assess
the change in recognition performance of the various
representations due to the use of the ERB frequency
scale and smoothing. These results are shown in figure 4.

It is clear, given the likely variability in the results noted
previously, that the advantage offered by auditory
frequency scaling, and imposing the associated auditory
frequency resolution, is nearly independent of the
method used to calculate the PSD estimate (around 10%
on average).

4. CONCLUSIONS

In the experiments reported here, it appears that auditory
PSD estimates consistently out-perform DFT-derived
MFCC analysis as a representation of speech for ASR. It
has been shown, however, that the magnitude of the
improvement is variable, depending both on the method
employed to estimate the PSD and that used to
characterise any dynamic aspects of the data. In
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Figure 1: HMM structure used in phoneme recognition experiments.
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Figure 2: Relative reduction in error rate when
replacing MFCCs by ‘auditory’ PSD estimates.
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Figure 3: Relative reduction in error rate when
replacing MFCCs by ‘auditory’ PSD estimates, using

delta-delta coefficients in both cases.



particular the advantage offered by the auditory PSD
estimates was less marked when delta-delta coefficients
were used, except when the PSD was estimated with the
maximum entropy method. In this latter case, the
advantage was very significant (similar to that reported in
[9]) and was almost independent of the use of delta-delta
coefficients.

This serves to act as a caveat for those who would
interpret published results claiming superiority for any
representation, be it auditory or non-auditory. There is a
complicated interaction between the representation and
the recognition algorithm, and future developments in the
latter may invalidate any current results assessing the
former.

Having established that, in all the experiments described
here, the auditory version of the maximum entropy
method gave around 15% reduction in phoneme
recognition errors, compared to the MFCC
representation. This advantage could not, however, be
attributed merely to the fact that the MEM is based on
AR modelling of the speech signal: the MEM and MLM
methods were both based on the same AR model analysis
of the data, but the MLM results were more like those
obtained with the Blackman-Tukey method, which is
based on an ACF/DFT approach. In the case when delta-
delta coefficients were used, there was little difference
between MFCC and either Blackman-Tukey or MLM
auditory PSD estimates.

For all the PSD estimates used here, there was about
10% improvement to be gained by the use of an auditory
frequency scale and an auditory frequency resolution.
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Figure 4: Relative reduction in error rate due to use of
auditory frequency-domain transformation.


